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OUTLINE

1- INTRODUCTION
review some experimental results

2- INTEGRABLE BEC MODELS
main emphasis: present the mathematical construction

3- ULTRACOLD ATOMIC FERMI GASES
main emphasis: discuss the physical properties

4- WILSON RATIO
obtain an analytical expression and discuss physical aspects

5- CONCLUSIONS
outlook of the area
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1-INTRODUCTION

Exactly Solvable models in Ultracold Physics – p. 3/57



Theoretical prediction:
• S. N. Bose (1924)
• A. Einstein (1924-1925)
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Experimental realization (70 years later):

• E. A. Cornellet al. (1995 )→ 87Rb

• W. Ketterleet al. (1995)→ 23Na

• C. C. Bradleyet al. (1995)→ 7Li
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Direct observation of tunneling and self-trapping:

Albiez, M. et al., Phys. Rev. Lett.95 (2005) 010402

In Section 2: Integrable model that describes qualitatively tunneling X self-trapping
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Atom-molecule BEC
After the experimental realization of a BEC using atoms, a significant effort was made to produce

a stable BEC in a gas of molecules

Zoller, P., Nature417(2002) 493

Donley, E. A., Nature417(2002) 529
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Fermionic pair condensation

D. Jin et al, Nature 424 (2003)

The first ultracold Fermi gas of40K atoms was created in 1999
by the group of D. Jin at JILA. Abreakthrough in the area was
the creation of a molecular condensate in an ultracold degenerate
Fermi gas by the groups of D. Jin, W. Ketterle and R. Grimm in
2003. After that the condensation of fermionic pairs was
detected and proved to be a superfluid.
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Fermions with Polarization
Superfluidity can persist with polarization?P =

N↑−N↓

N↑+N↓
0 ≤ P ≤ 1

A. Cho, Science 319 (2008)

Superfluidity may still occur in a mismatched system and sometheories with unusual pairing,

exotic phases have been proposed: Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, etc.

Experimental studies in ultracold Fermi gases with unequalspin population have been conducted,

searching for these new phases (groups at MIT and RICE - 3D)
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Two-component Fermi gases: 1D experiments
Crossed beam optical

trap
1D gas with spin

imbalance

Spin-imbalance in a one-dimensional Fermi gas, R. Hulet et al, Nature 467 (2010) 568

Basic result:observation of a partially polarized core (FFLO-like phase) surrounded by either a

completely paired BCS superfluid or a fully polarized Fermi gas, depending on the polarization

Section 3: Integrable model that predicts these 3 phases - qualitative and quantitative agreementExactly Solvable models in Ultracold Physics – p. 10/57



2- INTEGRABLE MODELS
OF BEC
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Two-site Bose Hubbard Hamiltonian:

H =
K

8
(N1−N2)

2−∆µ

2
(N1−N2)−

EJ
2
(a†

1
a2+a

†
2
a1)

• Ni = a†iai: number of atoms in the well(i = 1, 2)

• K: atom-atom interaction term
• ∆µ: external potential
• EJ : tunneling strength

G. Milburn et al, Phys. Rev. A55 (1997) 4318; A. Leggett, Rev. Mod. Phys.73 (2001) 307 A.

Foerster, J. Links and H.Q. Zhou, Class. and Quant. Nonlinear Integ. Systems (2003)

• The quantum dynamics of the model exhibits tunneling X
self-trapping - experiment of Albiez et al - 2005

• The model describes recent experiments of Oberthaler et al
on bifurcations and entanglement - 2011/12
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Integrability and exact solution:
• R-matrix:

R(u) =









1 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 1









,

b(u) =
u

u+ η
c(u) =

η

u+ η

• Yang-Baxter algebra:

R12(x−y)R13(x)R23(y) = R23(y)R13(x)R12(x−y)
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• Monodromy-matrix:

T (u) =

(

A(u) B(u)

C(u) D(u)

)

• Yang-Baxter algebra:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v)

• Realization of the monodromy matrix:

L(u) = π(T (u)) = La
1(u+ w)La

2(u− w)

La
i (u) =

(

u+ ηNi ai
a†i η−1

)

i = 1, 2

Exactly Solvable models in Ultracold Physics – p. 14/57



• Transfer matrix:

τ(u) = π(Tr(T (u))) = π(A(u) +D(u))

• Integrability:

[τ(u), τ(v)] = 0 −→ [H, τ(v)] = 0
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• Hamiltonian and transfer matrix:

H = κ

(

τ(u)− 1

4
(τ ′(0))2 − uτ ′(0)− η−2 + w2 − u2

)

with the identification:

K

4
=
κη2

2
,

∆µ

2
= −κηw, EJ

2
= κ

H =
K

8
(N1−N2)

2−∆µ

2
(N1−N2)−

EJ
2
(a†

1
a2+a

†
2
a1)

A generalization to a 2-site Bose Hubbard model with non-linear

tunneling is being investigated
Foerster, Links, Marquette and Mattei and Roditi, 2013- in preparation
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Applying the algebraic Bethe ansatz method:

• Energy:

E = −κ(η−2

N
∏

i=1

(

1 +
η

vi − w

)

−η
2N 2

4
−wηN−η−2)

• Bethe Ansatz Equations:

η2(v2i − w2) =
N
∏

j 6=i

vi − vj − η

vi − vj + η

The solutions of the BAE can be used to study

the Quantum Phase Transitions of the model
D. Rubeni, A. Foerster, E. Mattei and I. Roditi, NPB 2012
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INTEGRABLE GENERALISED MODELS:

Basic idea:

We can construct integrable generalised models in
the BEC context exploring different
representations of some algebra, such as thegl(N)
algebra andgl(M/N) superalgebra.

• Three-coupled BEC model

• Models for homo and hetero atom-molecular BEC

• ......

see talk by: JON LINKS
A. Foerster, J. Links and H.Q. Zhou, Class. and Quant. Nonlinear Integ. Systems (2003);

A. Foerster and E. Ragoucy, Nuclear Phys.B777(2007) 373;

A. Tonel, G. Santos, A. Foerster, I. Roditi, Z. Santos, Physical ReviewA79 (2009) 013624;
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3 - ULTRACOLD ATOMIC
FERMI GASES
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1D 2-component attractive Fermi gas with polarization:

• Hamiltonian

H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+ g1D

∑

1≤i<j≤N
δ(xi − xj)−

H

2
(N↑ −N↓)

• N spin1/2 fermions of massm

• constrained by PBC to a line of lengthL

• H: external field

• g1D = ~
2c
m

: 1D interaction strength:

attractive forg1D < 0 and repulsive forg1D > 0

HERE: ATTRACTIVE REGIME

• γ ≡ c
n
(n = N

L
) : dimensionless interaction;
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Bethe ansatz method
C.N. Yang, PRL19(1967)1312; M. Gaudin, Phys. Lett.24 (1967) 55

• Energy:

E =
~
2

2m

N
∑

j=1

k2j ,

• BAE:

exp(ikjL) =
M
∏

ℓ=1

kj − Λℓ + i c/2

kj − Λℓ − i c/2

N
∏

ℓ=1

Λα − kℓ + i c/2

Λα − kℓ − i c/2
= −

M
∏

β=1

Λα − Λβ + i c

Λα − Λβ − i c

{kj , j = 1, . . . , N} are the quasimomenta for the fermions;

{Λα, α = 1, . . . ,M} are the rapidities for the internal spin degrees of freedom

The solutions to the BAE give the GS properties and provide a clear pairing signature
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BA-root configuration for the GS
BA configuration of quasimomenta k in the complex plane for the GS: for a given polarization,

the system is described by bound states ("Cooper pairs") andunpaired fermions

Weak Regime

E

L
≈ ~

2n3

2m

(

−|γ|
2

(1− P 2) +
π2

12
+
π2

4
P 2

)

Strong Regime

E

L
≈ ~

2n3

2m

{

−γ
2(1− P )

4
+
P 3π2

3

(

1 +
4(1− P )

|γ|

)

+
π2(1− P )3

48

(

1 +
1− P

|γ| +
4P

|γ|

)}
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Thermodynamical Bethe Ansatz - TBA

• elegant method to study thermodynamical properties

• convenient formalism to analyse QPT atT = 0

• 1969 C. N. Yang and C. P. Yang, "Yang-Yang approach"

• 1972 M. Takahashi, string hypothesis

• thermodynamic limit:L→ ∞,N → ∞ with N/L finite:

• consider a distribution function for the BA-roots;

• the equilibrium state is determined by the condition of

minimizing the Gibbs free energy:

G = E −HM z − µN − TS
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TBA - equations:

set of coupled nonlinear integral equation:

ǫb(k) = 2(k2 − µ− 1

4
c2) + Ta2 ∗ ln(1 + e−ǫb(k)/T )

+Ta1 ∗ ln(1 + e−ǫu(k)/T )

ǫu(k) = k2 − µ− 1

2
H + Ta1 ∗ ln(1 + e−ǫb(k)/T )

−T
∞
∑

n=1

an ∗ ln(1 + η−1
n (k))

ln ηn(λ) =
nH

T
+ an ∗ ln(1 + e−ǫu(λ)/T )

+

∞
∑

n=1

Tnm ∗ ln(1 + η−1
m (λ))

The dressed energies:ǫb(k) := T ln(σh(k)/σ(k)) andǫu(k) := T ln(ρh(k)/ρ(k)) for

paired and unpaired fermions; the functionηn(λ) := ξh(λ)/ξ(λ) is the ratio of string densities.

The Gibbs free energy per unit length (Takahashi’s book):

G = −T
π

∫

∞

−∞

dk ln(1 + e−ǫb(k)/T )− T

2π

∫

∞

−∞

dk ln(1 + e−ǫu(k)/T )
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Limit T → 0: dressed energy equations

ǫb(Λ) = 2(Λ2 − µ− c2

4
)−

∫ B

−B
a2(Λ− Λ′)ǫb(Λ′)dΛ′

−
∫ Q

−Q
a1(Λ− k)ǫu(k)dk

ǫu(k) = (k2 − µ− H

2
)−

∫ B

−B
a1(k − Λ)ǫb(Λ)dΛ

am(x) =
1

2π

m|c|
(mc/2)2 + x2

, ǫb(±B) = ǫu(±Q) = 0

The Gibbs free energy per unit length at zero temperature is given by

G(µ,H) =
1

π

∫ B

−B
ǫb(Λ)dΛ +

1

2π

∫ Q

−Q

ǫu(k)dk

From the Gibbs free energy per unit length we have the relations

−∂G(µ,H)/∂µ = n, −∂G(µ,H)/∂H = mz = nP/2
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Strong attraction

H =
~
2n2

2m

{

γ2

2
+ 2P 2π2

(

1 +
4(1− P )

|γ| − 4P

3|γ|

)

−π
2(1− P )2

8

(

1 +
4P

|γ|

)}

.

CRITICAL FIELDS:

Hc1 =
~
2n2

2m

(

γ2

2
− π2

8

)

Hc2 =
~
2n2

2m

[

γ2

2
+ 2π2

(

1− 4

3|γ|

)]
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Phase diagram and schematic representation:

•

He, Foerster, Guan, Batchelor, NJP2009
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• For T=0: The TBA predicts 3 phases in the strong coupling regime: a superfluid phase,a

fully polarized phase and a partially polarized phase, in agreement with experiments

• For low T: Theoretical predictions from low-T TBA + LDA

(solid lines) in the strong coupling regime are in

quantitative agreement with experimental measurements

(circles) of density profiles of a 2-spin mixture of ultracold
6Li atoms in 1D tubes

Liao et al. Nature 2010; the black (blue) circles are the density of fermions in the state|1 >

(|2 >) and the red squares the difference between these two states; the solid lines are the

predictions from TBA+LDA; the polarizations are 0.015, 0.055, 0.10 and 0.33.
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4-Wilson Ratio

Exactly Solvable models in Ultracold Physics – p. 29/57



Universal Ratios
In condensed matter, dimensionless ratios of
quantities that take universal values can provide
deep physical insights. Some examples include:

• Wiedemann-Franz ratio
• Sommerfeld-Wilson ratio
• Kadowaki-Woods ratio
• Korringa ratio

Why universal ratios are important?

• show that the same particles are responsible for

the two different quantities that form the ratio;

• provide significant constraints on theories;

• demonstrate universality.
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Wilson Ratio
The Wilson ratio is defined as the ratio of the magnetic
susceptibilityχ to specific heatcv divided by temperatureT

RW =
4

3

(

πkB
µBg

)2
χ

cv/T

• It quantifies the interaction effect and spin fluctuations;

• Examples:RW = 1 for noninteracting or weakly correlated
electrons in metals;RW = 2 in Kondo regime for impurity
problem;RW = 2 for the spin-1/2 Heisenberg chain

• The Wilson ratio has recently been measured in a spin
1/2-ladder compound(C7H10N)2CuBr2: RW = 4K, where

K is the TLL parameterNinios et al, PRL2012

• wherekB is the Boltzmann constant,µB is the Bohr
magneton,g is the Lande factor;
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Wilson Ratio for the 2-component attractive Fermi gas
Key result:

RW =
4

(

vbN + 4vuN
)

(

1

vb
s

+ 1

vu
s

)

in terms of the density stiffnessvb,uN and sound velocityvb,us for pairs b and unpaired fermions u.

They can be calculated from the ground state energy:

vbN =
~πn2

2m

[

1 +
4

|c| (n− 3n2) +
3

c2
(4n2 − 24nn2 + 30n2

2)

]

vuN =
~πn1

m

[

1 +
4

|c| (n− 2n1) +
4

c2
(3n2 + 10n2

1 − 12nn1)

]

vbs =
~πn2

2m

[

1 +
2(2n1 + n2)

|c| +
3(2n1 + n2)2

c2

]

vus =
~πn1

m

[

1 +
8n2

|c| +
48n2

2

c2

]

Guan, Yin, Foerster, Batchelor, Lee, Lin, PRL 2013
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Contour Plot of the Wilson Ratio:
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Contour plot ofRW for |γ| = 10 as a function of the temperature and magnetic field using the

TBA. In the region below the dashed lines,RW is temperature independent.RW = 0 for the

paired (PP) and ferromagnetic (F) phases. Near the criticalpoints, the ratio reveals anomalous

enhancement. The inset shows the enhancement at the lower critical point.
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Basic idea:
• The main ingredients: susceptibility and specific heat are

obtained from the TBA-equations ( coupled equations with

temperature)

• Procedure: From the TBA equations we derive an equation

of state in the strong coupling and low temperature regime

and from it we derive the susceptibility and specific heat by

standard thermodynamics
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Susceptibility
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Dimensionless susceptibility vs magnetic field for|γ| = 10. The analytic result (red crosses)
agrees with the numerical result obtained from the equationof state (TBA). The susceptibility is

basically independent of temperature.
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Specific Heat

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

0.00 0.02
0

20

40

60

 

 

c V
b/(T

|c
|)

P

 TLL
 t=0.00001
 t=0.0001
 t=0.0004
 t=0.0008
 t=0.0012
 t=0.002

 
c V

b/(T
|c

|)

 

 

P

t=0.00001

cv =
πk2BT

3~

(

1

vbs
+

1

vus

)

.

Dimensionless specific heat vs polarization for|γ| = 10. The analytic result (red crosses)
agrees with the numerical result obtained from the equationof state (TBA). By increasingt a

deviation from analytic result can be seen, indicating the breakdown of the 2-component TLL.
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Wilson Ratio
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The analytic result (red crosses) agrees with the numericalresult obtained from the equation of
state (TBA). Anomalous behaviour is found nearP = 0 andP = 1.
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Wilson Ratio
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RW vs polarization for|γ| = 10 atT = 0.00001ǫb. The ratio exhibits anomalous enhancement

near the two critical points due to the sudden change of the density of states, where the values

RW = 5.53 andRW = 1.52 agree with the values obtained from the analytic expression.

The WR of 1D Fermi gases can be measured in the lab
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5-CONCLUSIONS
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Exactly solvable models finding their way into the lab:

Advanced experimental techniques in trapping and cooling atoms in 1D have provided the

realization of exactly solved models in the lab. Some examples:

• the Lieb-Liniger Bose gas

T. Kinoshita et al Science 2004, PRL 2005, Nature 2006; A. vanAmerongen et al

PRL2008; T. Kitagawa et al PRL 2010; J. Armijo et al PRL 2010

• the super Tonks-Girardeau gas

E. Haller et al Science 2009

• the degenerate spin-1/2 Fermi gas

Y. Liao et al Nature 2010; S. Jochim et al, Science 2011,PRL 2012: Deterministic

preparation of few-fermion system; 2 fermions in a 1D harmonic trap

• the two-component spinor Bose gas
J. van Druten et al arXiv:1010.4545
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Concluding remarks:
• The Wilson ratio provides a measurable parameter to

quantify different phases in 1D interacting fermions; it

exhibits anomalous enhancement at the two critical points

due to the sudden change in the density of states.

• Exactly solvable models are no longertoy models!

They provide a precise description of quantum phases,

thermodynamics, density profiles which are applicable to

experiments with ultracold atoms confined to 1D tubes;

• It is clear that the Bethe Ansatz will continue to prosper as
a valuable tool in the description of ultracold atoms.

Exactly Solvable models in Ultracold Physics – p. 41/57



Collaborators
1. ***Prof. Murray T. Batchelor, ANU-Australia

2. ***Prof. Xiwen Guan, ANU-Australia and Wuhan-China

3. ***Prof. Jon Links, UQ-QLD-Australia

4. Prof. Eric Ragoucy, LAPTH-France

5. Prof. Itzhak Roditi, CBPF-Brazil

6. Prof. Arlei Tonel, Unipampa-Brazil

7. Dr. Ioannis Brouzos, Uni-Ulm-Germany

8. Dr. Gilberto S. Filho, CBPF-Brazil

9. ***Dr. Carlos Kuhn, ANU-Australia

10. ***Dr. Ian Marquette, UQ-QLD-Australia

11. Dr. Eduardo Mattei, CBPF-Brazil

12. ***Brendan Wilson (PHd student), ANU-Australia

13. Jardel Cestari (PHd student), UFRGS-Brazil

14. Diefferson Lima (PHd student), UFRGS-Brazil

15. David Carvalho (master student), UFRGS-Brazil

16. Rafael Barfknecht (master student), UFRGS-Brazil

Exactly Solvable models in Ultracold Physics – p. 42/57



THANK YOU !!!

Exactly Solvable models in Ultracold Physics – p. 43/57



Dimensionless ratios:

• The Wiedemann-Franz ratiois the ratio of the electronic

contribution of the thermal conductivity (κ) to the electrical

conductivity (σ)

• The Kadowaki-Woods ratiois the ratio of A, the quadratic

term of the resistivity andγ, the linear term of the specific

heat.

• The Korringa ratioK is given byK = 1/(T1TK
2), where

T1 is the nuclear spin-lattice relaxation time,K the Knight
shift andT the temperature.
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Equation of state:
From the TBA equations we can derive the equation of state forstrong coupling:

p̃ := p/(|c|εb) = p̃b + p̃u

where the pressures of the bound pairs and unpaired fermionsare:

p̃b = − t
3
2

2
√
π
F b
3/2

[

1 +
p̃b

8
+ 2p̃u

]

+O(c4)

p̃u = − t
3
2

2
√
2π
F u
3/2

[

1 + 2p̃b
]

+O(c4)

with the functionsF b
n, Fu

n , fbn, f
u
n defined by F b,u

n := Lin
(

−eXb,u/t
)

and

fb,un := Lin
(

−eνb,u/t
)

, with νb = 2µ̃+ 1, νu = µ̃+ h/2. HereLis(z) =
∑

∞

k=1 z
k/ks is

the polylog function, withI0(x) =
∑

∞

k=0
1

(k!)2
(x
2
)2k

Xb

t
=

νb

t
− p̃b

t
− 4p̃u

t
− t

3
2

√
π

(

1

16
fb5/2 +

√
2fu5/2

)

Xu

t
=

νu

t
− 2p̃b

t
− t

3
2

2
√
π
fb5/2 + e−h/te−KI0(K).
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Thermodynamics

The thermodynamics of the model can be calculated from the standard thermodynamic relations.

Mz =

(

∂p(µ,H, T )

∂H

)

T,µ

, s =

(

∂p(µ,H, T )

∂T

)

µ,H

,

χ =

(

∂Mz

∂H

)

n,T

, cv = T

(

∂s

∂T

)

n,p

. (1)

where the pressures of the unpaired fermions and bound pairsare:

pr =
rT

2π

∫

∞

−∞

dk ln(1 + e−ǫr(k)/T )

with ǫr the dressed energies which can be written in terms of polylogarithmic functions and

r = 1 for unpaired fermions andr = 2 for paired fermions
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Susceptibility and specific heat at finite T:
From the equation of state, obtained from the TBA equations:

• Susceptibility:

χ̃ = − 1

8
√
2π∆3

{

1√
t
Fu
−

1
2

[

1 +
3
√
t

2
√
π
F

Ab

1/2
+

2
√
2t

π
F b

1
2

Fu
1
2

]

+
2
√
2
√
t

π
F b
−

1
2

(

Fu
1
2

)2
}

where ∆ = 1−
√
t

2
√
π
F b

1
2

− t
√
2

π
F b

1
2

Fu
1
2

+
t
3
2

16
√
π
F b
3/2.

• Specific heat:
cv = cbv + cuv
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Integrability:

τ(u) is a generating function of conserved quantities

• The condition:

[τ(u), τ(v)] = 0

• represents a set of conservation laws:

[cn, cm] = 0

• where:

logτ =
∑

cnv
n

• in many cases:

c0 = iP, c1 = H, ......
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Geometric Ansatz: the basic idea

• Change to Jacobi coordinates, which allows to remove the

CM-coordinate;

• Change of coordinates to hyperspherical coordinates: radial

componentλ and the angular part~θ = {θ1, θ2, ...θN−2}.

• The relative Hamiltonian now takes the form:

Ĥrel = − ~
2

2µ
∇2 +

1

2
µω2λ2 + c

∑

j

δ
(

dj(~θ)
)

.

For smallλ, Ĥrel is approximately the one solved by the

Bethe ansatz. For largeλ the behaviour is dominated by

that of a harmonic oscillator.
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Variational principle:EGS ≤ 〈ψ|Hrel|ψ〉
〈ψ|ψ〉 ,

Geometric Ansatz for the trial wavefunction:

Ψ(λ, ~θ) =







ψB

(

~κ, λ, ~θ
)

λ < Λ

A(~θ) exp
(

−α(~θ)(λ2 − Λ2)
)

λ > Λ
.

-4 -2 0 2 4

-4

-2

0

2

4

r1

r 2

Inside

Outside

Λ=L

Schematic representation of|Ψ|2 for N = 3. Λ determines the boundary between 2 regions:

inside (Bethe ansatz) and outside (asymptotic harmonic oscillator). The colors range from purple

to red indicating respectively lower values and higher values of|Ψ|2.Exactly Solvable models in Ultracold Physics – p. 50/57



Density Profiles
The equation of state can be reformulated within the local density
approximation (LDA) by a replacementµ(x) = µ(0)− 1

2
mω2

xx
2

in whichx is the position andωx is the trapping frequency, the
total particle number and the polarization are given by:

N

a2xc
2

=

∫ ∞

−∞
ñ(x̃)dx̃,

P =

∫ ∞

−∞
ñ1(x̃)dx̃/(N/(a

2

xc
2)).
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Appendix:Bethe ansatz

A solvable or integrable quantum many-body system is one in whichN -particle wave function

may be explicitly constructed. In general,N ! plane waves areN -fold products of individual

exponential phase factorseikixj , where theN distinct wave numbers,ki, are permuted among

theN distinct coordinates,xj . Each of theN ! plane waves have an amplitude coefficient in

each of regions. For example, in the domain0 < xQ1 < xQ2 < . . . < xQN < L, the wave

function is written as

ψ =
∑

P

Aσ1...σN
(P1, . . . , PN |Q1, . . . , QN ) exp i(kP1xQ1 + . . .+ kPNxQN )

• Continuity:ψ
xQi=x−

Qj

= ψ
xQi=x+

Qj

• Schrödinger equation:Hψ = Eψ

• two-body scattering

relation:Aσ1...σN
(PiPj |QiQj) = [Yij ]

σ′
1...σ

′
N

σ1...σN
Aσ′

1
...σ′

N
(PjPi|QiQj)

• boundary conditions:ψ(x1, . . . , xi, . . . , xN ) = ψ(x1, . . . , xi + L, . . . , xN )
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1D tubes and experimental quantities:

Arrangement: Optical laser trap creates standing waves of

slightly different frequencies in 2 orthogonal directions. The

intersection of the standing waves creates 1D tubes.

Conditions for 1D:

a) highly elongated traps;

b) tunneling rate larger than the time of experiment.

• N1 ≈ 120, is the number of atoms per 1D tube in state|1 >;

• t
kB

≈ 17nK heret is tunnelling rate;

• εF
kB

≈ 1.2µK, whereεF = N1~ωz is 1D Fermi energy;

• ω⊥/ωz = 1000 whereωz andω⊥ are the axial and

transverse confinement frequencies of an individual tube;

• T ≈ 175nK.
It is necessary thatεF > t andT > t to ensure that Fermi surface is 1D and avoid inter-tube tun.
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Three-coupled BEC model

H = Ω2 (a
†
2
a1 + a†

1
a2 + a†

2
a3 + a†

3
a2)

+Ω (a†
1
a3 + a†

3
a1) + µn1 + µn3 + µ2 n2,

• (1): left well
• (2): middle well
• (3): right well
• Ω: tunneling between the left and the right wells
• Ω2: left-middle and middle-right tunneling
• µ2, µ: external potentials.

A. Foerster and E. Ragoucy, Nuclear Phys.B777(2007) 373;
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Appendix: Quantum dynamics:

• Temporal operatorU :

determines the time evolution of any physical quantity

U =

N
∑

n=0

e−iλnt|ψn〉〈ψn|

{λn} ; {|ψn〉}: eigenvalues and eigenvectors ofH

• Temporal evolution of any state:|ψ(t)〉 = U |φ〉 =
∑N

n=0 ane
−iλnt|ψn〉,

an = 〈ψn|φ〉 and|φ〉: initial state

• Expectation value of any operatorA

〈A〉 = 〈ψ(t)|A|ψ(t)〉
• Imbalance population

A = (N1 −N2)/N

Plot the time evolution of the expectation value of the imbalance
population for different ratios of the couplingK/EJ
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Appendix: Dynamical regimes:
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