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OUTLINE

1- INTRODUCTION

review some experimental results

2- INTEGRABLE BEC MODELS

main emphasis: present the mathematical construction

3- ULTRACOLD ATOMIC FERMI GASES

main emphasis: discuss the physical properties

4- WILSON RATIO

obtain an analytical expression and discuss physical aspec

5- CONCLUSIONS

outlook of the area
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Theoretical prediction:

* S. N. Bose (1924)
« A. Einstein (1924-1925)

Satynathra Bose Albert Einstein
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EXperl mental reallzathn (70 years later):

» E. A. Cornellet al. (1995 )— " Rb
« W. Ketterleet al. (1995)— *’Na
« C. C. Bradleyet al. (1995)— "Ls

¥ ‘..-:-i
IME?* Tha Nobal Prize in Physics 2001

Eric A. Cornell Waolfgang Carl E. Wieman
Eeftterle
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Direct observation of tunneling and self-trapping:
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Albiez, M. et al. Phys. Rev. Lett95 (2005) 010402

In Section 2: Integrable model that describes qualitatin@hneling X self-trapping
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Atom-molecule BEC

After the experimental realization of a BEC using atomsgaificant effort was made to produce

a stable BEC in a gas of molecules
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Zoller, P, Nature417(2002) 493
Donley, E. A.Nature417(2002) 529
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Fermionic pair condensation

D. Jin et al, Nature 424 (2003)

The first ultracold Fermi gas df K atoms was created in 1999
by the group of D. Jin at JILA. Areakthrough in the area was
the creation of a molecular condensate in an ultracold cergén
Fermi gas by the groups of D. Jin, W. Ketterle and R. Grimm In
2003. After that the condensation of fermionic pairs was
detected and proved to be a superfluid.
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Fermions with Polarization

Superfluidity can persist with polarization? = Ny Ny

N4+Ny

0<P<1
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@ Spin-up
atoms

Spin-down
Balanced atoms Imbalanced

Find a partner. When atoms spinning one way outnumber those spinning the
other, they still can pair and flow freely—perhaps like matter in a neutron star.

A. Cho, Science 319 (2008)

Superfluidity may still occur in a mismatched system and sthraeries with unusual pairing,
exotic phases have been proposed: Fulde-Ferrell-Larkirhidnikov (FFLO) states, etc.
Experimental studies in ultracold Fermi gases with unegpal population have been conducted,

SearChing for these new phases (groups at MIT and RICE - ?EIQa):tlv Solvable models in Ultracold Phvsics — p. 9/57



Two-component Fermi gases: 1D experiments
Crossed beam optical 1D gas with spin
trap imbalance

2D lattice array of 1D tubes with
small inter-tube tunneling

Spin-imbalance in a one-dimensional Fermi gas, R. Hulet,alature 46

Basic resulbbservation of a partially polarized core (FFLO-like phles@rounded by either a

completely paired BCS superfluid or a fully polarized Ferms gdepending on the polarization

Section 3: Integrable model that predicts these 3 phasesitativeaad.grantitative. ageeement, o7



2- INTEGRABLE MODELS




Two-site Bose Hubbard Hamiltonian:

K A £
H = = (Ni—Np)*— 7“(N1 —Np) = < (alas +ahar)

e N; = a}ai: number of atoms in the weft = 1, 2)
o K: atom-atom interaction term
* Au: external potential

« £;:. tunneling strength
G. Milburn et al, Phys. Rev. B5(1997) 4318; A. Leggett, Rev. Mod. Phy8.(2001) 307 A.
Foerster, J. Links and H.Q. Zhou, Class. and Quant. Nonhmeteg. Systems (2003)

* The quantum dynamics of the model exhibits tunneling X
self-trapping - experiment of Albiez et al - 2005

* The model describes recent experiments of Oberthaler et al
on bifurcations and entanglement - 2011/12
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Integrability and exact solution:

o R-matrix:

/1 0 0 O\
R(u) = 0 b(u) c(u) O
0 c(u) b(u) 0]’
\0 0 0 1/
__u "
b(u)_u+77 C(u)_u—|—77

* Yang-Baxter algebra:

Rio(x—y)Ri3(x) Roz(y) = Roz(y) Riz(x) Rio(v—y)
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« Monodromy-matrix:

« Yang-Baxter algebra:
Ris(u — v)T1(u)Th(v) = To(v)Th(u)Ria(u — v)
» Realization of the monodromy matrix:
L(u) = m(T'(u)) = Li(u + w)Ly(u — w)
. u+nhN;, a; ,
L: (U) — ( a;r 771) 1 — ]_7 2
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e Transfer matrix:

r(u) = ©(Tr(T(u))) = 7(A(u) + D(u))

* Integrability:
7(u), 7(v)] =0 — [H,7(v)] =0
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« Hamiltonian and transfer matrix:

1

H =k (T(u) — Z(T’(O))Q —ur’(0) — % + w? — u2>
with the identification:

K  kn? AL E 7

— = — = —RNhW — =K

4 2 2 T

K JAN E
H = g(Nl—NQ)Q—TM(Nl—NQ)—?J( IQQ—FCL;CI&)

A generalization to a 2-site Bose Hubbard model with noadin

tunneling is being investigated
Foerster, Links, Margquette and Mattei and Roditi, 2013- ingamation
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Applying the algebraic Bethe ansatz method:
* Energy:

N 2 A7
3 N n°N B
E:—/i(n2||<1 'Lv-—w> 7 wnN—n"%)
i=1 ¥

« Bethe Ansatz Equations:

N
2002 _ .2\ _ Vi v
77(?}@ w) gvz—vj+77

The solutions of the BAE can be used to study

the Quantum Phase Transitions of the model
D. Rubeni, A. Foerster, E. Mattei and |. Roditi, NPB 2012
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INTEGRABLE GENERALISED MODELS:
Basic idea:

We can construct integrable generalised models in
the BEC context exploring different
representations of some algebra, such as thg(/V)

algebra andgl(M/N) superalgebra.

* Three-coupled BEC model

* Models for homo and hetero atom-molecular BEC

A. Foerster, J. Links and H.Q. ZhpGlass. and Quant. Nonlinear Integ. Systems (2003);
A. Foerster and E. Ragougciuclear PhysB777(2007) 373;
A. Tonel, G. Santos, A. Foerster, I. Roditi, Z. SanRisysical ReviewA79 (2009) 013624;
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3 - ULTRACOLD ATOMIC




1D 2-component attractive Fermi gas with polarization:

« Hamiltonian
B2 o 92 H
HZ—%;@WLng Z 5(%—%)—5(NT—N¢)

* N spin1/2 fermions of mass
* constrained by PBC to a line of length
* H: external field

* 91D = %’: 1D interaction strength:
attractive forg,p < 0 and repulsive fog;p > 0

(n = &) : dimensionless interaction;

L
n

* 7
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Bethe ansatz method

C.N. Yang, PRI191967)1312; M. Gaudin, Phys. Lef24 (1967) 55

* Energy:
R e
B = m 215
71=1
* BAE:
M .
ki—Ap+ic/2
exp(ik;L) = /
p(ik; L) Hk’-—Ag—ic/Z
(=1 "
. M .
IJ—V[Aa—kg+1c/2 _ _HAQ—A5+1C
6_1/\0[—]65—16/2 5:1AO‘_A5_10
{kj, 3 =1,..., N} are the quasimomenta for the fermions;
{Aa, a=1,..., M} are the rapidities for the internal spin degrees of freedom
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|

BA-root configuration for the GS

BA configuration of quasimomenta k in the complex plane fer@5: for a given polarization,
the system is described by bound states ("Cooper pairs")yiapaired fermions

(a) Weakly Attractive Interaction (b) Strongly Attractive Interaction

Strong Regime

Pn3 ( v2(1—P) P3x? 4(1 — P) (1 — P)3 1—-P 4P
~ = + 1+ ——— | + i +
2m 4 3 7| il
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Thermodynamical Bethe Ansatz - TBA

elegant method to study thermodynamical properties
convenient formalism to analyse QPTiat= 0

1969 C. N. Yang and C. P. Yang, "Yang-Yang approach"
1972 M. Takahashi, string hypothesis

thermodynamic limit:L. — oo, N — oo with N/ L finite:
e consider a distribution function for the BA-roots;

* the equilibrium state is determined by the condition of
minimizing the Gibbs free energy:
G=F—-—HM?—uN —-TS
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TBA - equations:

set of coupled nonlinear integral equation:

1
k) = 2k*>—pu-— Zc2) T N e OVEA
+Tay = In(1 + e_eu(k)/T)

1
(k) = Kk°—pu-— EH + Tay *In(1 + e_eb(k)/T)

-T i an * In(1 4+ n-1(k))

n=1

H u
Innn(A) = nT +ap *xIn(l14+e € (A)/T)

+3° T *In(1 477 (V)

n=1

The dressed energies? (k) := T In(c" (k) /o (k)) ande® (k) := T In(p" (k) /p(k)) for
paired and unpaired fermions; the functign ()\) := £"()\)/£()\) is the ratio of string densities.
The Gibbs free energy per unit length (Takahashi’'s book):

G:—Z/ dkIn(1+ e~ (W)/T) _ 5/ dkIn(1 + e~ (R)/T)

7T — 00 T — &5
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Limit 7" — 0: dressed energy equations

c B
eP(A) = 2(A% — p — Z) — /_B az(A — A)eP(A)dA

Q
—/ a1 (A — k)e®(k)dk
—Q

% (k) = (k% — p — g) = /_E; a1(k — A)eP(A)dA

1 m)c|

" 27 (mc/2)? + 2 (£B) = '(+Q) =0

am, ()

The Gibbs free energy per unit length at zero temperaturieés dpy

B

G =~ [

1 Q
e?(A)dA + — / e (k)dk
— B 27 —Q

From the Gibbs free energy per unit length we have the relstio

—0G(u, H)/Oup=n, —0G(u,H)/OH =m, =nP/2
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Strong attraction

2n? 2 41— P 4P
2m | 2 ol 3[7]

2(1 — P)? AP
_m ) (1 n —> } .
8 il
CRITICAL FIELDS:

o ()

hQ 2 2 4
Ho = - | L yor2(1- =
2m | 2 3|
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Phase diagram and schematic representation:

. SR SO L R S
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He, Foerster, Guan, Batchelor, NJP2009
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® For T=0: The TBA predicts 3 phases in the strong coupling regime: arflyid phase,a

fully polarized phase and a partially polarized phase, re@qent with experiments

* Forlow T: Theoretical predictions from low-T TBA + LDA

(solid lines) in the strong coupling regime are in
guantitative agreement with experimental measurements

(circles) of density profiles of a 2-spin mixture of ultragol
°Li atoms in 1D tubes

E
&
=1
Fae8
=
c
r‘:.
1
E
<

a0
Axial position (pm)

Liao et al. Nature 2010; the black (blue) circles are the dgnsf fermions in the statgl >

(|2 >) and the red squares the difference between these two ;dfa¢esolid lines are the

predictions from TBA+LDA, the polarizations are 0.015,860Q.10 and 0.33. . .
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Universal Ratios

In condensed matter, dimensionless ratios of
guantities that take universal values can provide
deep physical insights. Some examples include:

« Wiedemann-Franz ratio
« Sommerfeld-Wilson ratio
« Kadowaki-Woods ratio

« Korringa ratio

Why universal ratios are important?
* show that the same particles are responsible for
the two different quantities that form the ratio;
* provide significant constraints on theories;

* demonstrate universality.
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Wilson Ratio

The Wilson ratio is defined as the ratio of the magnetic
susceptibilityy to specific heat, divided by temperaturé

4 7TICB . X
By = = || 28
. 3<NBQ) Co/ T

* [t quantifies the interaction effect and spin fluctuations;

* Examples:Ry, = 1 for noninteracting or weakly correlated
electrons in metalsiRy,, = 2 in Kondo regime for impurity
problem; Ry, = 2 for the spin-1/2 Heisenberg chain

* The Wilson ratio has recently been measured in a spin
1/2-ladder compound’; H1gN )2 C, Bo: Ry = 4K, where
K isthe TLL parameteNiniOS et aI, PRL2012

* wherekg Is the Boltzmann constants Is the Bohr
magnetong IS the Lande faCtor’ Exactlv Solvable models in Ultracold Phvsics — n. 31/57



Wilson Ratio for the 2-component attractive Fermi gas
Key result:

4

(URT_I_ZLUR[) (vlb | vlg>

S

Ry =

in terms of the density stlffnew% and sound veIOC|ty)S " for pairs b and unpaired fermions u.
They can be calculated from the ground state energy:

h [ 4 3 ]
R = 2y = (n —3ng) + —2(4n2 — 24nng + 30n3)
2m g c |
" _
T ::’1 1+ ﬂ(n —2n1) —|— (3n + 10n7 — 12nn1)
’Ub _ hmno _1 2(27?,1 + ng) n 3(2711 + n2)2
® 2m | |c| c?
g = hmny -1 o N9 48n%
m | || c?

Guan, Yin, Foerster, Batchelor, Lee, Lin, PRL 2013
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Contour Plot of the Wilson Ratio:

Contour plot ofRyy, for || = 10 as a function of the temperature and magnetic field using the
TBA. In the region below the dashed lind3y;, is temperature independeRy;, = 0 for the
paired (PP) and ferromagnetic (F) phases. Near the crimals, the ratio reveals anomalous

enhancement. The inset shows the enhancement at the |otieal @oint.
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Basic idea:

* The main ingredients: susceptibility and specific heat are
obtained from the TBA-equations ( coupled equations with
temperature)

* Procedure: From the TBA equations we derive an equation
of state in the strong coupling and low temperature regime
and from it we derive the susceptibility and specific heat by
standard thermodynamics
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Susceptibility

——=0.00001 =10
t=0.0001
- - --t=0.0004

t=0.0008 X analytical
S t=0.0012 O energy relation
numerics

1/(hmvl) xa = 1/(4kmoly)

|
|
|
|
=
-
||

Dimensionless susceptibility vs magnetic field fof = 10. The analytic result (red crosses)
agrees with the numerical result obtained from the equatiatate (TBA). The susceptibility is

basically independent of temperature.
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Specific Heat

X TLL
t=0.00001
t=0.0001

- - - t=0.0004
--—--1=0.0008
—emee t=0.0012
- - - - 1=0.002

t=0.00001

7rk2BT ( 1 1 )
Cy = _|_ 5
3 \vb o

Dimensionless specific heat vs polarization |f@&r: 10. The analytic result (red crosses)
agrees with the numerical result obtained from the equatictate (TBA). By increasing a

deviation from analytic result can be seen, indicating tteakdown of thq:e%age mponent Tl.L

Exactlv Solvab s in
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Wilson Ratio

TLL
t=0.00001 t=0.00001
t=0.0001
- ---1=0.0004
t=0.0008
—eemee t=0.0012

Ry =
(v + 40%) (55 + 5)

The analytic result (red crosses) agrees with the numeargsalt obtained from the equation of
state (TBA). Anomalous behaviour is found néar= 0 andP = 1.
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Wilson Ratio

Ryy vs polarization fory| = 10 at7T = 0.00001¢. The ratio exhibits anomalous enhancement
near the two critical points due to the sudden change of theityeof states, where the values

Ry = 5.53 and Ry = 1.52 agree with the values obtained from the analytic expression
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Exactly solvable models finding their way into the lab:

Advanced experimental technigues in trapping and cooliogha in 1D have provided the

realization of exactly solved models in the lab. Some exasnpl

* the Lieb-Liniger Bose gas
T. Kinoshita et al Science 2004, PRL 2005, Nature 2006; A Araerongen et al

PRL2008; T. Kitagawa et al PRL 2010; J. Armijo et al PRL 2010

* the super Tonks-Girardeau gas

E. Haller et al Science 2009

* the degenerate spin-1/2 Fermi gas
Y. Liao et al Nature 2010; S. Jochim et al, Science 2011,PRR2Deterministic

preparation of few-fermion system; 2 fermions in a 1D harimomap

* the two-component spinor Bose gas
J. van Druten et al arXiv:1010.4545
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Concluding remarks:

* The Wilson ratio provides a measurable parameter to
guantify different phases in 1D interacting fermions; it
exhibits anomalous enhancement at the two critical points
due to the sudden change in the density of states.

* Exactly solvable models are no longey models
They provide a precise description of guantum phases,
thermodynamics, density profiles which are applicable to
experiments with ultracold atoms confined to 1D tubes;

* Itis clear that the Bethe Ansatz will continue to prosper as
a valuable tool in the description of ultracold atoms.
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THANK YOU
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Dimensionless ratios:

* The Wiedemann-Franz ratis the ratio of the electronic
contribution of the thermal conductivity| to the electrical
conductivity ¢)

* The Kadowaki-Woods ratie the ratio of A, the quadratic
term of the resistivity and, the linear term of the specific
heat.

* The Korringa ratioX is given byK = 1/(1,TK?), where

T; 1s the nuclear spin-lattice relaxation tim,the Knight
shift and7 the temperature.
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Equation of state:
From the TBA equations we can derive the equation of statstfong coupling:

p = p/(Icles) = B’ + p"

where the pressures of the bound pairs and unpaired ferrarens
3

P o= 2\;_ [1+Z§+2 ]+O( )
o= — t 1+ 2p°] +O(cY)

2v/27 3/2

with the functionsi®, F%, 2 fu defined by F2™* := Lin, (—eXb’u/t) and

o o= Tty ( e U/t) with vy = 23 + 1, vy = i+ h/2. HereLis(z) = 332, 2°/k®is
the polylog function, withlp (z) = 352, (k%)g (£)2%

X vy Pp° 4p% t2 (1 b V2 )
t ¢t t T 1675/2 V252
@ _ Iy(K).
L L Tt aymnate e o(K)
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Thermodynamics

The thermodynamics of the model can be calculated from #redard thermodynamic relations.

P <3p(u,H,T)> S:<8p(u,H,T)>
OH T oT GH
- ) (),
0H /., r aT /., ,

where the pressures of the unpaired fermions and boundagrairs

T [oo .
pr= dkIn(1 4+ e~ (R)/T)

T J—oc0

with € the dressed energies which can be written in terms of padyithgnic functions and

r = 1 for unpaired fermions ane = 2 for paired fermions
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Susceptibility and specific heat at finite T:
From the equation of state, obtained from the TBA equations:

* Susceptibility:

1 1 3Vt 24/2t 22/t 2
SRS SN U0 Y. NP BT
8v2r A3 | Vit —3 2v/m 1/ T 2 3 s —2 \ 2
3
VE o V2, t2
where A=1—- —~_pb _T-pbpu 4~ b _.
o0/ 3w 3 3 167 °/?

* Specific heat:

— b
co = ¢ + ¢y

cb 1 %

| VT 2t

1 Uy,
_—Fb _4~u_|_~b _|_
WS (t (4p" +7°)
Co 1 3 JIFY Vt w
v ) tFy + —F
c] \/7_T{ 8v/2 5 2v/2 3

- — {—gﬂFg +VEF? (ﬁ +
2 2

5)
= (45 ~b
8t( pY +p’) +
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Integrabllity:
7(u) IS a generating function of conserved quantities

* The condition:

7(u), T(v)] =0
* represents a set of conservation laws:

chyem] =0

logT = Z CpU"

e where:

° In many cases:

C()Z?JP, Cle, ......
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Geometric Ansatz: the basic iIdea

* Change to Jacobi coordinates, which allows to remove the
CM-coordinate;

* Change of coordinates to hyperspherical coordinatesalradi
component and the angular paﬁt: {01,05,...08_2}.

* The relative Hamiltonian now takes the form:

) 2
H,..; = —S—MV2 -+ %,uwQ)\Q + CZ(S (dj(ﬁ)) .

J

For small)\, H,.; is approximately the one solved by the
Bethe ansatz. For largethe behaviour is dominated by
that of a harmonic oscillator.
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Variational principle:Eqg < w'fzrgJW,

Geometric Ansatz for the trial wavefunction:

Schematic representation |af |2 for N = 3. A determines the boundary between 2 regions:
inside (Bethe ansatz) and outside (asymptotic harmonitiaisc). The colors range from purple
to red indicating respectively lower values and higher &alaf| W2 soivable models in Ultracold Physics — 0. E0/57



Density Profiles

The equation of state can be reformulated within the locastdg
approximation (LDA) by a replacemeptz) = 1(0) — smw?2a?
In which z Is the position and,, Is the trapping frequency, the

total particle number and the polarization are given by:

N O
— / n(z)dz,
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Appendix:Bethe ansatz

A solvable or integrable quantum many-body system is onehichv/V-particle wave function
may be explicitly constructed. In generdy)! plane waves arév-fold products of individual
exponential phase factoes®i®i , where theN distinct wave numbers;;, are permuted among
the IV distinct coordinatesz ;. Each of theN! plane waves have an amplitude coefficient in
each of regions. For example, in the domair. zg1 < zg2 < ... < zgn < L, the wave

function is written as

Y = ZAal NP1y, PN|Q1, ..., @QN) expi(kp1zQ1 + ... + kpNZQN)

> Continuity:wa. _ =4

i=rQj ‘rBQl_ZBQJ
® Schrodinger equatiort{i) = E
® two-body scattering
relationAg, ..o (PiPj|QiQ5) = [Yig]Z1 "IN Agy o (P Pi]QiQy)

® boundary conditionsy(z1, ..., %, ..., xn) = Y(x1,..., 2 + L,...,TN)
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1D tubes and experimental quantities:

Arrangement: Optical laser trap creates standing waves of
slightly different frequencies in 2 orthogonal directioiifie
Intersection of the standing waves creates 1D tubes.
Conditions for 1D.

a) highly elongated traps;

b) tunneling rate larger than the time of experiment.

* N; = 120, is the number of atoms per 1D tube in stdte>;
e L ~ 17nK heret is tunnelling rate;

° £~ 1.2uK, wheresp = Nyfw. is 1D Fermi energy;

* w, /w, = 1000 wherew, andw, are the axial and
transverse confinement frequencies of an individual tube;

* T'= 175nkK.

It is necessary thatr > t andT” > t to ensure that Fermi surface is 1D and avoid inter-tube tun.
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Three-coupled BEC model

H = Q, (alar + alas + abas + alay)
+() (aJ{ag + agal) + ung + puns + o no,

1): left well
2): middle well

3): right wel

« (). tunneling between the left and the right wells
» ()9 left-middle and middle-right tunneling

° L9, u. external potentials.

(
°
(

A. Foerster and E. Ragougciuclear PhysB777(2007) 373;

Exactlv Solvable models in Ultracold Phvsics — n. 54/57



Appendix: Quantum dynamics:

®  Temporal operatol/:
determines the time evolution of any physical quantity

N
U= Z G_Mnt|¢n><¢n|
n=0
{\n}; {|¥n)}: eigenvalues and eigenvectorskf

® Temporal evolution of any staté(t)) = Ul¢) = S°N_ ane™ P ntjahy,),
an = (¥n|¢) and|¢): initial state

® Expectation value of any operatdr
(A) = (W(t)[Aly(2))

® Imbalance population
A= (N1 — N2)/N

Plot the time evolution of the expectation value of the irabeg
population for different ratios of the coupling /&
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Appendix: Dynamical regimes:
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