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Introduction

Polymers in solution

large molecules composed of many repeated subunits

fractals, characterised by universal exponents
M x n ~ R%, d; fractal dimension
impenetrability gives rise to an excluded volume effect
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The collapse transition

e The presence of solvent induces effective self-attraction
¢ A phase transition occurs as the temperature is changed

coil 0 state globule

<S5 B
T>T, T=Te T<Te
Aol deoilt < dp < Aglobule Qgiobule = d



Introduction

Self-avoiding walk

e Sequence of distinct vertices xg, X1, - - - , X, such that each
vertex is the nearest neighbour of its predecessor.

e Scaling laws

Zp~ 1"

R2 = (|xn — xo|?) ~ A n?”

e vand v = 1/df are universal exponent.
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Interacting self-avoiding walk (ISAW)

¢ Introduce self-interactions (contacts my)




Introduction

Collapse transition

¢ As the interaction increases we reach a critical point
#-point

I
I

coil We globule
¢ Finite-size quantities are expected to obey a scaling form
Cn(w) ~ n*? C((w — we)n?)
where C(x) is a scaling function and 0 < ¢ < 1.
e Exponents « and ¢ satisfy the relation

1
2—a=—
¢



Introduction Field theory for polymers Polymers with crossings The Wu-Bradley model Conclusions

Outline

Field theory for polymers



Field theory for polymers

Magnetic systems

Another fundamental problem in statistical mechanics

Z =Trexp (JZ§,~ : §,) where § = (s',...,s™)
(i.f)

HT expansion generates polymer configurations

Sending m — 0 gives an excluded volume effect

SAW corresponds to the critical point

Collapse transition then corresponds to a tricritical point



Field theory for polymers

Loop models

X
 Obtained truncating the HT « !
expansion
» Consider an ensamble C of ] T ?
self-avoiding loops s
7 — Z Xlength m#loops l
¢ 0 1 2

dilute-loops branch, critical, SAW when m =0
dense-loops branch, RG attractive, globule when m =0

6-point maps to a point on the dense branch at m =1 (like
the boundaries of percolation clusters)

Also obtainable introducing vacancies at m=0



Field theory for polymers

Exact exponents

Exact exponents can be obtained using Coulomb Gas
techniques

Watermelon exponents A, = A,(m; dilute/dense)

1
Ay=1-L  pp=2-~
2v v

This gives
Vdilute = 3/4 Vg = 4/7 Vdense = 1/2
The transition exponents can also be computed

a=-1/3 ¢=3/7



Introduction Field theory for polymers Polymers with crossings The Wu-Bradley model Conclusions

Outline

Polymers with crossings



Polymers with crossings

The presence of loop crossings

This description is sensitive to the presence of crossings
A4 > 2 (irrelevant) on the dilute-loop branch

A4 < 2 (relevant) on the dense-loop branch

The dense-loop branch flows to a different phase



Polymers with crossings

The presence of loop crossings

This description is sensitive to the presence of crossings
A4 > 2 (irrelevant) on the dilute-loop branch

A4 < 2 (relevant) on the dense-loop branch

The dense-loop branch flows to a different phase

6-point is therefore not generic
Self-avoidance brings in an additional unwanted symmetry
Crossings break that symmetry

What is the generic description of the polymer collapse
transition?



Polymers with crossings

Self-avoiding trail (SAT)

e A model for polymers with loops or polymers in thin layers.

where we now require only bond-avoidance
e Free SATs are in the same universality class as SAWs



Polymers with crossings

Interacting self-avoiding trails (ISAT)

¢ Introduce a same-site interaction on trails
l
1)
e Let m; be the number of doubly visited sites, we define

Z,LSAT(w) = Z wme,

SAT,

o Energy: u, = (my)/n, Specific heat: ¢, = ((m2) — (my)2)/n



Polymers with crossings

ISAT collapse transition

As shown by Owczarek and Prellberg on the square lattice
there is a collapse transition with estimated exponents

¢r=0.84(3) and ay = 0.81(3)

Additionally, the scaling of end-to-end distance was found
to be consistent with

R2 ~ n(log n)?

Clearly different from the 6-point
No predictions for these exponents



Polymers with crossings

O(m) in the Goldstone phase

PHYSICAL REVIEW B 87, 184204 (2013)

£

Loop models with crossings

Adam Nahum,! P. Serna,2 A. M. Somoza,? and M. Ortufio®

Critical ISAT is described by the Goldstone phase of
Oo(m—1)

That is the generic low-temperature phase of O(m)

It flows to a weak-coupling fixed point

Dense-loops flow to this phase when crossings are allowed
ISAT is an “infinite-order multicritical point”
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The Wu-Bradley model

Competing nearest-neighbour
and doubly-visited site
interations

Zn(1,w) = Z 7MtyMe

SAT, T

e 7 =0: ISAW
e w=1:ISAT
e 7= 1: NNISAT

AB, A L Owczarek and T Prellberg, arXiv:1311.1034v1
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Numerical phase diagram

5
o We sampled ~ 10'"" walks
at n = 256 using flatPERM ar
Zn(T,w) = Z Wi, m, 7Mw™e 3/
mg,Me -
2_
e We located phase
transitions by looking at il
the maximum eigenvalue

; %.0 O‘.S 1‘.0 1‘.5 2‘.0 2‘.5 3.0
of the matrix "
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First-order transition line

e We also simulated a vertical line with fixed w = 0.5

— 7=2.507
— 71=2.517
— T1=2.527

0 100 200 300 400 500

my

e We collected ~ 100 samples at n = 1024



Introduction Field theory for polymers Polymers with crossings The Wu-Bradley model Conclusions

m; =132 m; = 256

m; = 400
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Proposed phase diagram

ISAT
T |
3 T
TP B R NNISAT
0 § 2 ISAW
0 1 0 “
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NNISAT exponents

Even when 7 =1 > 0, we have a collapse transition with 6
exponents

5.5 T T T T T T 0.8

T
— slope 0.575

45 -

T T
« positive peak

50T * negative peak | |

0.7 |

4.0 B

3.5 4

1/2 log(R?),

1.5 . B

L L L L L L 0.2 L L L L L
2 3 4 5 6 7 8 9 10 0.00 0.02 0.04 0.06 0.08 0.10 0.12

logn n3/7

v~ 0.575(5) vs 4/7 ~ 0.571 (a + 1)é ~ 0.23(5) vs
2/7 ~0.28
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Conclusions

Summary

e The polymer collapse problem is not fully understood yet
e A model that is fully generic is still missing
e Itis not clear what universality class INNSAT is
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