Integrable structure of Quantum Field

Theory: Classical flat connections versus

 quantum stationary statesVladimir Bazhanov
Australian National University
(with Sergei Lukyanov (Rutgers), arxiv:1310.4390, 1310.8082)

- Integrable Quantum Field Theory (QFT), Integrals of Motion
- Conformal Field Theory (CFT), Infinite-dimensional algebra of (extended) conformal symmetry
- Bethe Ansatz, functional relations for commuting transfer matrices
- Theory of differential equations
- Scattering problem for ODE, connection coefficients, Stocks multipliers, ...
- monodromy group, monodromy-free singular points
- What's the meaning of the number 18 in the theory of the hypergeometric equation?
- second order PDE, arising as "zero-curvature condition" for multivalued flat connections on the punctured Riemann sphere
- Space of states in QFT - Set of singular differential operators with special monodromy properties

Local IM in CFT

(VB, Lukyanov, Zamolodchikov, 1994)

Let Vir be the Virasoro algebra generated by $L_{n} \in \operatorname{Vir}$,

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(n^{3}-n\right) \delta_{m+n, 0}
$$

Suppose we are given a set of mutually commuting operators from the universal enveloping of Vir:

$$
\mathbb{I}_{s} \in U(\text { Vir }): \quad\left[\mathbb{I}_{s}, \mathbb{I}_{s^{\prime}}\right]=0
$$

What is the spectrum of \mathbb{I}_{s} in the
highest weight representaion of Vir : $V_{\Delta, c}$?
We are forced to make some assumptions about the Abelian subalgebra.

- It would be natural to include L_{0} in the commuting set; L_{0} splits $V_{\Delta, c}$ on the finite dimensional level subspaces:

$$
L_{0} V_{\Delta, c}^{(L)}=(\Delta+L) V_{\Delta, c}^{(L)} \quad \operatorname{dim}\left[V_{\Delta, c}^{(L)}\right]<\infty .
$$

Therefore, the problem is reduced to a finite dimensional spectrum problem in $V_{\Delta, c}^{(L)}$.

- We choose the first nontrivial \mathbb{I}_{s} in the form

$$
\sum_{n} \alpha_{n} L_{-n} L_{n}+\beta L_{0}+\gamma
$$

- Locality condition: Let $T(x), x \in S^{1}(x \sim x+R)$ be the holomorphic component of stress-energy tensor. We assume that \mathbb{I}_{s} are given by the integral over the local densities build from the field $T(x)$. For example

$$
I_{1}=\oint T=\frac{R}{2 \pi}\left[L_{0}-\frac{c}{24}\right]
$$

The quadratic in L_{n} operator is defined up to overall normalization by our locality requirement

$$
I_{3}=\oint T^{2}=\left(\frac{R}{2 \pi}\right)^{3}\left[2 \sum_{n=1}^{\infty} L_{n} L_{n}+L_{0}^{2}-\frac{c+2}{12} L_{0}+\frac{c(5 c+22)}{2880}\right]
$$

All other operators \mathbb{I}_{s} are defined (up to overall factor) by the commutativity condition. For example

$$
I_{5}=\oint\left(T^{3}+\frac{c+2}{12}\left(T^{\prime}\right)^{2}\right)
$$

There exists an infinite set $\left\{\mathbb{I}_{2 n-1}\right\}_{n=1}^{\infty}$ which first representatives are given by the above formulas. They are the so called local Integrals of Motion (IM). The odd-integers $2 n-1$ stand for the values of the Lorentz spin.

We'll focus on the highest vector eigenvalues:

$$
I_{2 n-1}^{(v a c)}(\Delta, c): \quad \mathbb{I}_{2 n-1}|\Delta\rangle=\left(\frac{R}{2 \pi}\right)^{2 n-1} I_{2 n-1}^{(v a c)}|\Delta\rangle
$$

which are certain polynomials in Δ and c :

$$
I_{1}^{(v a c)}=\Delta-\frac{c}{24}, \quad I_{3}^{(v a c)}=\Delta^{2}-\frac{c+2}{12} \Delta+\frac{c(5 c+22)}{2880}, \ldots
$$

CFT integrals of motion - quantization of conserved quantities in KdV theory

$$
T(x) \rightarrow-\frac{c}{6} U(x), \quad \partial_{t} U=U U_{x}-6 U_{x x x}, \quad c \rightarrow \infty
$$

Functional relations

- Transfer matrices $\mathbb{T}_{j}(\mu)$ (quantum analogs of traces of monodromy matrices for mKdV) satisfy the fusion relations

$$
\mathbb{T}_{j}(q \mu) \mathbb{T}_{j}\left(q^{-1} \mu\right)=1+\mathbb{T}_{j+\frac{1}{2}}(\mu) \mathbb{T}_{j-\frac{1}{2}}(\mu), \quad\left(q=\mathrm{e}^{\mathrm{i} \pi \beta^{2}}, \quad c=1-6\left(\beta-\beta^{-1}\right)^{2}\right)
$$

- \mathbb{T}_{j} can be regarded as generating function for the local IM

$$
\log \mathbb{T}_{j} \sim \sum_{n=0}^{\infty} c_{n}^{(j)} \mathbb{I}_{2 n-1} \kappa^{1-2 n} \quad \kappa=\mu^{\frac{1}{2\left(1-\beta^{2}\right)}}
$$

- As $\beta^{2}=\frac{p}{p^{\prime}}$ the functional relations are truncated. In this case the vacuum eigenvalues,

$$
\mathbb{T}_{j}(\mu)|\Delta\rangle=t_{j}(\mu)|\Delta\rangle
$$

satisfy a finite set of integral equations (TBA equations). Numerical values of the vacuum eigenvalues $I_{2 n-1}^{(v a c)}$ can be extracted from the solutions of the TBA equations.

- The TBA equations are expecially simple in the case

$$
\beta^{2}=\frac{1}{N+1}, \quad N=1,2, \ldots \quad \Delta=\frac{1-4 N^{2}}{6(N+1)} .
$$

Related to RSOS models (Andrews-Baxter-Forrester '84, Baxter-Pearce '87).

ODE/IM correspondence

Let us consider the anharmonic potential

$$
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}}+y^{2 N}-E\right) \Psi=0
$$

The WKB spectrum can be determined by means of the WKB approximation.

$$
\begin{aligned}
& \text { WKB spectra }\left\{E_{n}\right\}_{n=1}^{\infty} \Longrightarrow \oint \mathrm{d} y \sqrt{E_{n}-U(y)}=2 \pi(n+\ldots) \\
& E_{2} \\
& E_{1}
\end{aligned}
$$

- Voros (1992) derived the exact Exact Bohr-Sommerfeld quantization condition.
- Dorey-Tateo (1998) observed that TBA for $\beta^{2}=\frac{1}{N+1}$ are exactly the same as the Voros one.
- The observation was immediately generalized and proven BLZ (1998)
- ODE/IM correspondence for the excited states BLZ (2003)

According to BLZ (1998) the vacuum eigenvalues of $\mathbb{T}_{j}(\mu)$, i.e., $t_{j}(\mu),\left(j=\frac{1}{2}, 1, \ldots\right)$ coincide with certain monodromy coefficients for the ODE

$$
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}+\frac{l(l+1)}{z^{2}}+\kappa^{2} p(z)\right) \Psi=0, \quad p(z)=z^{2 \alpha}-1 .
$$

One can reformulate this result in terms of the vacuum eigenvalues $I_{2 n-1}^{(v a c)}$;

$$
\begin{gathered}
w=\int \mathrm{d} z \sqrt{p(z)} \quad: \quad\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} w^{2}}+\hat{u}(w)+\kappa^{2}\right) \tilde{\Psi}=0 \\
\tilde{\Psi}(w) \sim \mathrm{e}^{F(w)} \exp \left(-\kappa w+\sum_{n=1}^{\infty} \kappa^{1-2 n} c_{n} \int^{w} \mathrm{~d} w U_{n}[\hat{u}]\right) \\
F(w)=\sum_{n=1}^{\infty} \kappa^{-2 n} F_{n}[\hat{u}(w)] \quad F_{n}[\hat{u}]-\text { differential polinomials in } \hat{u} .
\end{gathered}
$$

Also $U_{n}[\hat{u}]$ are homogeneous (grade $(\hat{u})=2$, grade $(\partial)=1$, grade $\left(U_{n}\right)=2 n$) differential polynomials in \hat{u} of degree n (known as the Gel'fand-Dikii polynomials):

$$
U_{1}=\hat{u}, \quad U_{2}=\hat{u}^{2}-\frac{1}{3} \hat{u}^{\prime \prime} \ldots
$$

Hence the monodromy coefficients are given by

$$
\log t_{\frac{1}{2}}(\mu) \sim \sum_{n} c_{n} \kappa^{1-2 n} \mathfrak{q}_{2 n-1}, \quad \mathfrak{q}_{2 n-1}=\oint_{C_{w}} \mathrm{~d} w U_{n}[\hat{u}(w)]
$$

We may now return to the original variable z

$$
w \rightarrow z, \quad U_{n}[\hat{u}(w)] \rightarrow \tilde{U}_{n}(z)
$$

The ODE/IM correspondence: $\quad I_{2 n-1}^{(v a c)}=d_{n} \mathfrak{q}_{2 n-1}$
Here d_{n} are some (known) constants which depend on normalization conventions for $\mathfrak{q}_{2 n-1}$ and $\mathbb{I}_{2 n-1}$, whereas the parameters are identified as follows:

$$
c=1-\frac{6 \alpha^{2}}{\alpha+1}, \quad \Delta=\frac{(2 l+1)^{2}-4 \alpha^{2}}{16(\alpha+1)} .
$$

Excited states

$$
\left(-\partial_{z}^{2}+T_{L}(z)\right) \psi=0, \quad T_{L}(z)=-\sum_{i=1}^{L+3}\left(\frac{\delta_{i}}{\left(z-z_{i}\right)^{2}}+\frac{c_{i}}{z-z_{i}}\right)
$$

with $\left\{z_{i}\right\}=\left\{z_{1}, z_{2}, z_{3}, x_{1}, \ldots, x_{L}\right\}$ and

$$
\delta_{i}=\frac{1}{4}-p_{i}^{2}, \quad i=1,2,3 ; \quad \quad \delta_{a+3}=-2, \quad a=1,2, \ldots, L
$$

Monodromy group

$$
\boldsymbol{M}: \pi_{1}\left(\mathbb{C P}^{1} \backslash\left\{z_{i}\right\}\right) \mapsto \mathbb{S L}(2, \mathbb{C}), \quad \operatorname{Tr}\left(\boldsymbol{M}^{(i)}\right)=-2 \cos \left(2 \pi p_{i}\right)
$$

Condition: points x_{1}, \ldots, x_{L} are monodromy-free

$$
\begin{gathered}
T_{L}(z)=-\frac{l_{a}\left(l_{a}+1\right)}{\left(z-x_{a}\right)^{2}}-\frac{c_{a+3}}{z-x_{a}}-\sum_{k=0}^{+\infty} t_{k}^{(a)}\left(z-x_{a}\right)^{k}, \quad a=1, \ldots, L \\
\left(c_{a+3}\right)^{3}-4 c_{a+3} t_{0}^{(a)}+4 t_{1}^{(a)}=0
\end{gathered}
$$

For fixed p_{i}, the only free parameters are the positions x_{1}, \ldots, x_{L}.

$$
\mathcal{D}(\lambda)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}+T_{L}(z)+\lambda^{2} \mathcal{P}(z), \quad \mathcal{P}(z)=\frac{\left(z_{3}-z_{2}\right)^{a_{1}}\left(z_{1}-z_{3}\right)^{a_{2}}\left(z_{2}-z_{1}\right)^{a_{3}}}{\left(z-z_{1}\right)^{2-a_{1}}\left(z-z_{2}\right)^{2-a_{2}}\left(z-z_{3}\right)^{2-a_{3}}}
$$

and parameters $0<a_{i}<2$ satisfy the constraint $a_{1}+a_{2}+a_{3}=2$. Monodromy free conditions give additional L equations

$$
c_{a+3}=-\left.\partial_{z} \log \mathcal{P}(z)\right|_{z=x_{a}}=\sum_{i=1}^{3} \frac{2-a_{i}}{x_{a}-z_{i}}, \quad a=1, \ldots L
$$

number of solutions $\mathcal{N}_{L}=p_{3}(L)=3,9,22, \ldots$ (stationary states in CFT for Fateev model).

Monodromy matrix for the Pochhammer loop $(c(x)=\cos (\pi x))$

$$
\begin{aligned}
& \mathcal{W}(\lambda)=\operatorname{Tr} \boldsymbol{M}\left(\gamma_{P}\right)=2\left(2+c\left(4 p_{1}\right)+c\left(4 p_{2}\right)+c\left(4 p_{3}\right)+c\left(2 p_{1}+2 p_{2}+2 p_{3}\right)\right. \\
& \left.+c\left(2 p_{1}+2 p_{2}-2 p_{3}\right)+c\left(2 p_{1}-2 p_{2}+2 p_{3}\right)+c\left(-2 p_{1}+2 p_{2}+2 p_{3}\right)\right)+O\left(\lambda^{2}\right)
\end{aligned}
$$

For $p_{i}=0$ the constant term equals 18 .
WHY? What does it mean for the hypergeometric equation?

ODE/IM correspondence for massive integrable QFT

Now we consider the CFT perturbed by a relevant operator in the bulk

$$
\mathcal{A}_{\mu}=\mathcal{A}_{C F T}+\mu \int \mathrm{d}^{2} x \Phi \quad\left(d_{\Phi}=2 \Delta_{\Phi}<2\right)
$$

In general one expects that the perturbation leads to the massive QFT

$$
M_{a} \sim \mu^{\frac{1}{2-d_{\Phi}}}
$$

In the case of integrable perturbation the theory possesses an infinite set of local IM

$$
\left.\mathbb{I}_{s}\right|_{\mu \rightarrow 0}=\mathbb{I}_{s}^{(C F T)},\left.\quad \overline{\mathbb{I}}_{s}\right|_{\mu \rightarrow 0}=\overline{\mathbb{I}}_{s}^{(C F T)}
$$

Let $I_{2 n-1}=\bar{I}_{2 n-1}$ be the vacuum eigenvalues of \mathbb{I}_{s} and $\overline{\mathbb{I}}_{s}$.
Is it possible to relate $I_{2 n-1}(\mu)$ to monodromic characteristics of some ODE?

During the decade 1998-2008, all attempts to incorporate massive integrable QFT in the ODE/IM correspondence have failed.

- Gaiotto, Moore and Neitzke (2008): TBA-like equations for the Hitchin systems
- Alday, Maldacena (2009): Strong coupling amplitudes in ADS/CFT
- Zamolodchikov, Lukyanov (2010): ODE/IM for the $\sin (\mathrm{h})$-Gordon model

CMC embedding of a 3-punctured sphere in $A d S_{3}$

Let $\Sigma_{g, n}$ be a compact Riemann surface with n marked points ("punctures") and $a_{1}, a_{2}, \ldots a_{n}$ be positive numbers such that $2 \chi\left(\Sigma_{g}\right)+\sum_{i=1}^{n}\left(a_{i}-2\right)=0$. Then there exists a flat metric on $\Sigma_{g, n}$ with conical singularities of angle πa_{i} at the $i^{\text {th }}$ puncture. The metric is unique up to homothety.

Conical Punctures

In the case $\Sigma_{0,3}=\mathbb{S}^{2} /\left\{P_{1}, P_{2}, P_{3}\right\}: a_{1}+a_{2}+a_{3}=2$
Introduce a complex coordinate z and define a holomorphic differential $p(z)(\mathrm{d} z)^{2}$ on the universal cover of $\Sigma_{0,3}$:

$$
p(z)=\rho^{2} \frac{\left(z_{3}-z_{2}\right)^{a_{1}}\left(z_{1}-z_{3}\right)^{a_{2}}\left(z_{2}-z_{1}\right)^{a_{3}}}{\left(z-z_{1}\right)^{2-a_{1}}\left(z-z_{2}\right)^{2-a_{2}}\left(z-z_{3}\right)^{2-a_{3}}} \quad: \quad(\mathrm{d} s)_{0}^{2}=\sqrt{p(z) \bar{p}(\bar{z})} \mathrm{d} z \mathrm{~d} \bar{z}
$$

Here ρ stands for the homothety parameter and z_{i} labels the punctures.

Consider now the problem of constant mean curvature embedding of $\Sigma_{0,3}$ into $\operatorname{AdS} S_{3}$. In this case, the Gauss-Peterson-Codazzi equation can be brought to the form of the modified Sinh-Gordon (MShG) equation

$$
\partial_{z} \partial_{\bar{z}} \eta-\mathrm{e}^{2 \eta}+p(z) \bar{p}(\bar{z}) \mathrm{e}^{-2 \eta}=0,
$$

where the field η defines the induced metric

$$
(\mathrm{d} s)_{\mathrm{cmc}}^{2}=\frac{4}{1+H^{2}} \frac{\mathrm{e}^{2 \eta}}{\sqrt{p(z) \bar{p}(\bar{z})}}(\mathrm{d} s)_{0}^{2}
$$

and $H=$ const stands for the mean curvature. A suitable solution should be real and smooth as $z \neq z_{i}$, and, if we want to preserve the amount of the Gaussian curvature localized at the punctures, it should satisfy the conditions

$$
\begin{aligned}
& \eta-\frac{1}{4} \log (p(z) \bar{p}(\bar{z}))=O(1) \quad \text { at } z \rightarrow z_{i} \quad(i=1,2,3) \text { and } \infty \\
& \text { Generalized problem : } \eta= \begin{cases}-2 \log |z|+O(1) & \text { at } \\
2 m_{i} \log \left|z-z_{i}\right|+O(1) & \text { at } \\
z \rightarrow z_{i}\end{cases} \\
& \text { If } 0<a_{i}<2 \text { and }-\frac{1}{2}<m_{i} \leq-\frac{1}{4}\left(2-a_{i}\right)
\end{aligned}
$$

then the solution of the generalized problem exists and is unique.

The MShG equation is the compatibility condition of the linear problem

$$
\begin{gathered}
\boldsymbol{D}(\lambda) \boldsymbol{\Psi}=0, \quad \overline{\boldsymbol{D}}(\bar{\lambda}) \boldsymbol{\Psi}=0 . \\
\boldsymbol{D}(\lambda)=\partial_{z}-\boldsymbol{A}_{z}, \quad \overline{\boldsymbol{D}}(\bar{\lambda})=\partial_{\bar{z}}-\boldsymbol{A}_{\bar{z}}, \quad \lambda=\rho \mathrm{e}^{\theta}, \quad \bar{\lambda}=\rho \mathrm{e}^{-\theta} \\
\boldsymbol{A}_{z}=-\frac{1}{2} \partial_{z} \eta \sigma_{3}+\lambda\left(\sigma_{+} \mathrm{e}^{\eta}+\sigma_{-} \mathcal{P}(z) \mathrm{e}^{-\eta}\right) \\
\boldsymbol{A}_{\bar{z}}=\quad \frac{1}{2} \partial_{\bar{z}} \eta \sigma_{3}+\bar{\lambda}\left(\sigma_{-} \mathrm{e}^{-\eta}+\sigma_{+} \overline{\mathcal{P}}(\bar{z}) \mathrm{e}^{\eta}\right) .
\end{gathered}
$$

Additional monodromy-free punctures

$$
\mathrm{e}^{-\eta} \sim \frac{\bar{z}-\bar{x}_{a}}{z-x_{a}}, \quad(a=1, \ldots L), \quad \mathrm{e}^{-\eta} \sim \frac{z-y_{b}}{\bar{z}-\bar{y}_{b}}, \quad(b=1, \ldots \bar{L}) .
$$

satisfy the conditions

$$
\partial_{z} \eta=\frac{1}{z-x_{a}}+\frac{1}{2} \gamma_{a}+o(1), \quad \partial_{\bar{z}} \eta=-\frac{1}{\bar{z}-\bar{x}_{a}}+o(1), \quad a=1, \ldots L
$$

and

$$
\gamma_{a}=\left.\partial_{z} \log \mathcal{P}(z)\right|_{z=x_{a}}
$$

and similarly for y_{b}.

The MShG equation is a flatness condition for $s l(2)$-valued connection $\boldsymbol{A}=\boldsymbol{A}_{z} d z+\overline{\boldsymbol{A}}_{\bar{z}} d \bar{z}$. The connection is not single-valued on the punctured sphere. However, it does return to the original branch after a continuation along the non-contractible loop C

Therefore the Wilson loop

$$
W(\theta)=\operatorname{Tr}\left[\mathcal{P} \exp \left(\oint_{C} \boldsymbol{A}\right)\right]
$$

does not depend on the precise shape of the cycle used. It can be regarded as generating functions for the conserved charges

$$
\log W(\theta) \sim-\mathfrak{q}_{0} \mathrm{e}^{\theta}+\sum_{n=1}^{\infty} c_{n} \mathfrak{q}_{2 n-1} \mathrm{e}^{-(2 n-1) \theta} \quad \text { as } \quad \Re e(\theta) \rightarrow+\infty, \quad|\Im m(\theta)|<\frac{\pi}{2}
$$

here $c_{n}=\frac{(-1)^{n}}{2 n!} \frac{\Gamma\left(n-\frac{1}{2}\right)}{\sqrt{\pi}}$.

Fateev model (1996)

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{16 \pi} \sum_{i=1}^{3}\left(\left(\partial_{t} \varphi_{i}\right)^{2}-\left(\partial_{x} \varphi_{i}\right)^{2}\right) \\
& +2 \mu\left[\mathrm{e}^{\mathrm{i} \alpha_{3} \varphi_{3}} \cos \left(\alpha_{1} \varphi_{1}+\alpha_{2} \varphi_{2}\right)+\mathrm{e}^{-\mathrm{i} \alpha_{3} \varphi_{3}} \cos \left(\alpha_{1} \varphi_{1}-\alpha_{2} \varphi_{2}\right)\right]
\end{aligned}
$$

Here α_{i} are coupling constants subject to a single constraint

$$
\begin{gathered}
\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=\frac{1}{2} \\
\alpha_{1}^{2}>0, \quad \alpha_{2}^{2}>0, \quad \alpha_{3}^{2}>0 .
\end{gathered}
$$

The parameter μ in the Lagrangian sets the mass scale, $\mu \sim$ [mass]. We shall consider the theory in finite-size geometry, with the spatial coordinate x in $\varphi_{i}=\varphi_{i}(x, t)$ compactified on a circle of circumference R, with the periodic boundary conditions

$$
\varphi_{i}(x+R, t)=\varphi_{i}(x, t) .
$$

$$
\mathcal{A}_{\mu}=\mathcal{A}_{C F T}+\mu \int \mathrm{d}^{2} x \Phi \quad(d=1) .
$$

Due to the periodicity of the potential term in φ_{i},

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{16 \pi} \sum_{i=1}^{3}\left(\left(\partial_{t} \varphi_{i}\right)^{2}-\left(\partial_{x} \varphi_{i}\right)^{2}\right) \\
& +2 \mu\left[\mathrm{e}^{\mathrm{i} \alpha_{3} \varphi_{3}} \cos \left(\alpha_{1} \varphi_{1}+\alpha_{2} \varphi_{2}\right)+\mathrm{e}^{-\mathrm{i} \alpha_{3} \varphi_{3}} \cos \left(\alpha_{1} \varphi_{1}-\alpha_{2} \varphi_{2}\right)\right]
\end{aligned}
$$

the space of states \mathcal{H} splits on the orthogonal subspaces $\mathcal{H}_{k_{1}, k_{2}, k_{3}}$ characterized by the three "quasimomentums" k_{i} :

$$
\varphi_{i} \rightarrow \varphi_{i}+2 \pi / \alpha_{i}: \quad\left|\Psi_{k_{1}, k_{2}, k_{3}}\right\rangle \rightarrow \mathrm{e}^{2 \pi \mathrm{i} k_{i}}\left|\Psi_{k_{1}, k_{2}, k_{3}}\right\rangle
$$

The Fateev model is integrable, in particular it has infinite set of commuting local IM $\mathbb{I}_{2 n-1}^{(+)}, \mathbb{I}_{2 n-1}^{(-)}, 2 n=2,4,6, \ldots$ being the Lorentz spins of the associated local densities

$$
\mathbb{I}_{2 n-1}^{(\pm)}=\int_{0}^{R} \frac{\mathrm{~d} x}{2 \pi}\left[\sum_{i+j+k=n} C_{i j k}^{(n)}\left(\partial_{ \pm} \varphi_{1}\right)^{2 i}\left(\partial_{ \pm} \varphi_{2}\right)^{2 j}\left(\partial_{ \pm} \varphi_{3}\right)^{2 k}+\ldots\right]
$$

where $\partial_{ \pm}=\frac{1}{2}\left(\partial_{x} \mp \partial_{t}\right)$ and \ldots stand for the terms involving higher derivatives of φ_{i}, as well as the terms proportional to powers of μ. The constant $C_{i j k}^{(n)}$ is known (Zamolodchikov, Lukyanov, 2012)

$$
C_{i j k}^{(n)}=\frac{n!}{i!j!k!} \frac{\left(2 \alpha_{1}^{2}(1-2 n)\right)_{n-i}\left(2 \alpha_{2}^{2}(1-2 n)\right)_{n-j}\left(2 \alpha_{3}^{2}(1-2 n)\right)_{n-k}}{(2 n-1)^{3}\left(4 \alpha_{1}^{2}\right)^{1-i}\left(4 \alpha_{2}^{2}\right)^{1-j}\left(4 \alpha_{3}^{2}\right)^{1-k}}
$$

where $(x)_{n}$ is the Pochhammer symbol. The displayed terms with the given $C_{i j k}^{(n)}$ set the normalization of $\mathbb{I}_{2 n-1}^{(\pm)}$unambiguously.

Of primary interest are the eigenvalues

$$
I_{2 n-1}=I_{2 n-1}^{(+)}\left(\left\{k_{i}\right\} \mid R\right)=I_{2 n-1}^{(-)}\left(\left\{k_{i}\right\} \mid R\right)
$$

especially the k-vacuum energy

$$
E=2 I_{1} .
$$

In the large- R limit all vacuum eigenvalues $I_{2 n-1}$ vanish except I_{1}. The vacuum energy is composed of an extensive part proportional to the length of the system,

$$
E=R \mathcal{E}_{0}+o(1) \quad \text { at } \quad R \rightarrow \infty
$$

Specific bulk energy (Fateev, 1996)

$$
\mathcal{E}_{0}=-\pi \mu^{2} \prod_{i=1}^{3} \frac{\Gamma\left(2 \alpha_{i}^{2}\right)}{\Gamma\left(1-2 \alpha_{i}^{2}\right)} .
$$

ODE/IM correspondence

The eigenvalues of the local IM in the Fateev model can be expressed in terms of the classical conserved charges $\mathfrak{q}_{2 n-1}$:

$$
\begin{aligned}
\mu^{-1}\left(I_{1}-\frac{1}{2} R \mathcal{E}_{0}\right) & =d_{1} \mathfrak{q}_{1} \\
\mu^{1-2 n} I_{2 n-1} & =d_{n} \mathfrak{q}_{2 n-1} \quad(n=2,3, \ldots) .
\end{aligned}
$$

Here d_{n} are constants, independent of k_{i} and R. With the normalization conditions for $\mathfrak{q}_{2 n-1}$ and $\mathbb{I}_{2 n-1}^{(\pm)}$described above, d_{n} reads explicitly as

$$
d_{n}=(2 \pi)^{2 n-1} \frac{(-1)^{n-1}}{16 \pi^{2}} \prod_{i=1}^{3} \Gamma\left(2(2 n-1) \alpha_{i}^{2}\right)
$$

The parameters of the quantum and classical problems are identified as follows:

$$
\begin{aligned}
\alpha_{i}^{2} & =\frac{a_{i}}{4} \quad(i=1,2,3) \\
\left|k_{i}\right| & =\frac{1}{a_{i}}\left(2 m_{i}+1\right) \\
\mu R & =2 \rho
\end{aligned}
$$

Conclusion

- There a connection between the theory of Integrable Models in two dimensions and the spectral theory of Ordinary Differential Equations.
- Classical conserved charges $=$ Eigenvalues of IM in the integrable QFT
- Eigenvalues of transfer matrices $=$ connection coefficients between different bases solutions of ODE.
- We considered a class of "Perturbed Fuchsian differential equations"
- Multivalued flat connections on the punctured sphere and monodromy properties of associated singular differential operators
- Future tasks: Apply "Quantum Inverse Problem Method" to the Fateev model (Yang-Baxter structure, lattice regularization, etc.)
- What is 18 ? (Mininal dimension of representation of the quantized exceptional affine superalgebra $\left.U_{q}(\widehat{D}(2,1, ; \alpha))\right)$

