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Percolation

Figure 1: A typical percolation configuration,
with four clusters.

Site percolation on square lat-
tice

Occupation probability p

Cluster consists of nearest-
neighboring occupied sites
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Figure 2: Percolation illustrated as a stochas-
tic process.

Use an algorithm to generate
the cluster from the origin.

Let an active seed affect its
nearest neighbors with proba-
bility p.

Distinguish different shells
(time) by colors.

Reformulate percolation as a
stochastic process.
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Percolation

For infinite system (L→∞), there is a critical p value (pc),

when p ≤ pc, no infinite cluster exists

when p > pc, an infinite cluster exists with non-zero probability.

Define the order parameter P∞, which is the probability to grow an
infinite cluster and

P∞ =

{
0 for p ≤ pc
(p− pc)βP for p→ pc

+ .
(1)

βP is a critical exponent, and βP = 5/36 for 2D.
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Percolation

Around pc, the correlation length ξ diverges as

ξ ∼ |p− pc|−ν , (2)

ξ can be intuitively viewed as the averaged cluster radius

ν is another critical exponent and ν = 4/3 for 2D

Critical exponents βP and ν label percolation universality class.
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Percolation

When growing a cluster from an active seed using breadth first scheme,
the shortest-path between an occupied site and the seed is `, one has

〈`〉 ∝ rdmin . (3)

At pc, one expects:

P (r) ∼ r−β/ν .

P (`) ∼ `−β/(νdmin)

Around pc (ε = p− pc), according to scaling theory, one has:

P (r, p) = r−β/νf(εL1/ν).

P (`, p) = `−β/(νdmin)f(εL1/(νdmin))
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Directed Percolation

x

t

seed

Figure 3: two-dimensional directed percolation

Rotate the square lattice

Infection probability p

Only along the time axis

Use the same order parameter
P∞

With a exponent βDP, and
βDP 6= βP .
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Directed Percolation

Compared with Percolation,

DP is a non-equilibrium statistical mechanics model

have anisotropic correlation

ξ‖ ∼ |p− pc|−ν‖ , ξ⊥ ∼ |p− pc|−ν⊥ . (4)

Independent exponents (βDP, ν‖,ν⊥) label the DP universality class.

DP class is a fundamental class in non-equilibrium statistical me-
chanics, like the Ising class for equilibrium statistical mechanics.
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Biased Directed Percolation

seed

x

t

p

p

Figure 4: Rules for BDP

Compared with DP,

no direction limit

but with anisotropic infection
probabilities
Along time axis:
p↓ = ppd
Against time axis:
p↑ = p(1− pd)

When pd = 1/2, BDP = Perco-
lation

When pd = 0, 1, BDP = DP
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Biased Directed Percolation

seed

x

t

p

p

Figure 4: Rules for BDP

Compared with DP,

no direction limit

but with anisotropic infection
probabilities
Along time axis:
p↓ = ppd
Against time axis:
p↑ = p(1− pd)

When pd = 1/2, BDP = Perco-
lation

When pd = 0, 1, BDP = DP

Zongzheng Zhou (Monash Uni.) Crossover from IP to DP 13 / 21



Biased Directed Percolation

seed

x

t

p

p

Figure 4: Rules for BDP

Compared with DP,

no direction limit

but with anisotropic infection
probabilities
Along time axis:
p↓ = ppd
Against time axis:
p↑ = p(1− pd)

When pd = 1/2, BDP = Perco-
lation

When pd = 0, 1, BDP = DP

Zongzheng Zhou (Monash Uni.) Crossover from IP to DP 13 / 21



Biased Directed Percolation

seed

x

t

p

p

Figure 4: Rules for BDP

Compared with DP,

no direction limit

but with anisotropic infection
probabilities
Along time axis:
p↓ = ppd
Against time axis:
p↑ = p(1− pd)

When pd = 1/2, BDP = Perco-
lation

When pd = 0, 1, BDP = DP

Zongzheng Zhou (Monash Uni.) Crossover from IP to DP 13 / 21



Biased Directed Percolation

Consider a new region 1/2 < pd < 1,

we still use order parameter P∞, what is β′ characterizing P∞?

Correlation length

ξ′‖ ∼ |p− pc|
−ν′‖ , ξ′⊥ ∼ |p− pc|−ν

′
⊥ . (5)

what are the values of ν ′‖ and ν ′⊥?
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Biased Directed Percolation

With some fixed 1/2 < pd < 1 values, we sample quantity P (t, p) and
assume

P (t, p) = t
−β′/ν′‖f(εt

1/ν′‖) (6)

where ε = p− pc.
Do the Taylor expansion to the equation

Perform the least-squares fits of the Monte Carlo data to the ex-
pansion
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Biased Directed Percolation
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Figure 5: Exponent η with various pd values.

Sample quantity N (t), which

is the number of active
sites at time t,

scales as N (t) ∼ tη.
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Biased Directed Percolation

Phase Diagram
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Figure 6: Phase diagram of BDP on two (left) and three (right) dimensions.

Arrows represent the flow direction of Renormalization Group
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Biased Directed Percolation

Consider the critical region around percolation point (pd = 1/2, p = 1).

For pd = 1/2, p→ 1, a certain quantity O scales as

O ∼ `YOf(ε`Yε) , ε = p− pc , (7)

I YO is quantity dependent
I Yε = 1/(νdmin) with ν = 4/3

For p = 1, pd → 1/2,

O ∼ `YOdf(εd`
Yεd ) , εd = |pd − 1/2| , (8)

I YOd = YO
I Yεd = 1/(ν′dmin) 6= Yε, and we estimate Yεd = 0.500(5)
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Biased Directed Percolation

Crossover exponent φ is defined as

(1− pc) ∝ (pd,c − 1/2)1/φ (9)

points (pc, pd,c) are on the transition line
φ characterizes the crossover behavior from percolation to DP
φ = Yεd/Yε from scaling theory.
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Figure 7: Crossover exponent
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Biased Directed Percolation

Use a simple BDP model to generalize Percolation and DP models

Study the crossover effect from Percolation to DP

Is Yεd (ν ′) new or related to β, ν, dmin?

Is Yεd exactly equal to 1/2?

Can Yεd be derived by Stochastic Loewner Evolution (SLE), confor-
mal field theory or Coulomb gas theory ?

(1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E
86, 021102 (2012).
(2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero.
45, 494006 (2012).
(3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in prepara-
tion.

(4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428,

accepted by Phys. Rev. E (2012).
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Many thanks for your attention!
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