Crossover from isotropic to directed percolation

Zongzheng Zhou

School of Mathematical Sciences Monash University

Australian Government

Australian Research Council

Outline

2 Directed Percolation

3 Biased Directed Percolation

2

Outline

3 Biased Directed Percolation

2

2

Outline

2 Directed Percolation

3 Biased Directed Percolation

2

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- \bullet Occupation probability p
- *Cluster* consists of nearestneighboring occupied sites

(日) (四) (日) (日) (日)

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- \bullet Occupation probability p

• *Cluster* consists of nearestneighboring occupied sites

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- \bullet Occupation probability p

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• *Cluster* consists of nearestneighboring occupied sites

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- \bullet Occupation probability p

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• *Cluster* consists of nearestneighboring occupied sites

Figure 2: Percolation illustrated as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability *p*.
- Distinguish different shells (time) by colors.
- Reformulate percolation as a stochastic process.

(日) (四) (日) (日) (日)

Figure 2: Percolation illustrated as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability p.
- Distinguish different shells (time) by colors.
- Reformulate percolation as a stochastic process.

< ロト < 同ト < 回ト < ヨト

Figure 2: Percolation illustrated as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability p.
- Distinguish different shells (time) by colors.
- Reformulate percolation as a stochastic process.

< ロト < 同ト < 回ト < ヨト

Figure 2: Percolation illustrated as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability *p*.
- Distinguish different shells (time) by colors.
- Reformulate percolation as a stochastic process.

< ロト < 同ト < 回ト < ヨト

Figure 2: Percolation illustrated as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability p.
- Distinguish different shells (time) by colors.
- Reformulate percolation as a stochastic process.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

• when $p \leq p_c$, no infinite cluster exists

• when $p > p_c$, an infinite cluster exists with non-zero probability. Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \leq p_c \\ (p - p_c)^{\beta_{\rm P}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

(日) (四) (日) (日) (日)

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

• when $p \leq p_c$, no infinite cluster exists

• when $p > p_c$, an infinite cluster exists with non-zero probability. Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \leq p_c \\ (p - p_c)^{\beta_{\mathrm{P}}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

・ロト ・四ト ・ヨト ・ヨト

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \le p_c \\ (p - p_c)^{\beta_{\mathrm{P}}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

・ロト ・四ト ・ヨト ・ヨト

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \leq p_c \\ (p - p_c)^{\beta_{\mathrm{P}}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

• when $p \leq p_c$, no infinite cluster exists

• when $p > p_c$, an infinite cluster exists with non-zero probability. Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \leq p_c \\ (p - p_c)^{\beta_{\rm P}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

・ロト ・四ト ・ヨト ・ヨト

For infinite system $(L \to \infty)$, there is a critical p value (p_c) ,

• when $p \leq p_c$, no infinite cluster exists

• when $p > p_c$, an infinite cluster exists with non-zero probability. Define the order parameter P_{∞} , which is the probability to grow an infinite cluster and

$$P_{\infty} = \begin{cases} 0 & \text{for } p \le p_c \\ (p - p_c)^{\beta_{\mathrm{P}}} & \text{for } p \to p_c^+ \end{cases}$$
(1)

 β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.

$$\xi \sim |p - p_c|^{-\nu} , \qquad (2)$$

ξ can be intuitively viewed as the averaged cluster radius
 ν is another critical exponent and ν = 4/3 for 2D
 Critical exponents β_P and ν label percolation universality class.

$$\xi \sim |p - p_c|^{-\nu} , \qquad (2)$$

・ロト ・四ト ・ヨト

• ξ can be intuitively viewed as the averaged cluster radius

• ν is another critical exponent and $\nu = 4/3$ for 2D Critical exponents $\beta_{\rm P}$ and ν label percolation universality class

$$\xi \sim |p - p_c|^{-\nu} , \qquad (2)$$

・ロト ・四ト ・ヨト ・ヨト

ξ can be intuitively viewed as the averaged cluster radius
ν is another critical exponent and ν = 4/3 for 2D
ritical exponents β_P and ν label percolation universality class

$$\xi \sim |p - p_c|^{-\nu} , \qquad (2)$$

・ロト ・四ト ・ヨト ・ヨト

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents $\beta_{\rm P}$ and ν label percolation universality class.

$$\xi \sim |p - p_c|^{-\nu} , \qquad (2)$$

・ロト ・四ト ・ヨト ・ヨト

ξ can be intuitively viewed as the averaged cluster radius
ν is another critical exponent and ν = 4/3 for 2D
Critical exponents β_P and ν label percolation universality class.

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

・ロト ・四ト ・ヨト ・ヨト

At p_c , one expects:

• $P(r) \sim r^{-\beta/\nu}$. • $P(\ell) \sim \ell^{-\beta/(\nu d_{\min})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has: • $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$ • $P(\ell, p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

3

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

At p_c , one expects:

• $P(r) \sim r^{-\beta/\nu}$. • $P(\ell) \sim \ell^{-\beta/(\nu d_{\min})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has: • $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$ • $P(\ell, p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

At p_c , one expects:

• $P(r) \sim r^{-\beta/\nu}$. • $P(\ell) \sim \ell^{-\beta/(\nu d_{\min})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has: • $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$ • $P(\ell, p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

At p_c , one expects:

P(r) ~ r^{-β/ν}.
 P(ℓ) ~ ℓ^{-β/(νd_{min})}

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has: • $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$ • $P(\ell, p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

At p_c , one expects:

• $P(r) \sim r^{-\beta/\nu}$. • $P(\ell) \sim \ell^{-\beta/(\nu d_{\min})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

• $P(r,p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$ • $P(\ell,p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

▲□▶ ▲□▶ ▲回▶ ▲回▶ ▲□ ● ○○○

$$\langle \ell \rangle \propto r^{d_{\min}}$$
 (3)

At p_c , one expects:

P(r) ~ r^{-β/ν}.
 P(ℓ) ~ ℓ^{-β/(νd_{min})}

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

•
$$P(r,p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}).$$

• $P(\ell,p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

Outline

3 Biased Directed Percolation

2

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With a exponent β_{DP} , and $\beta_{DP} \neq \beta_P$.

(D) (A) (A) (A)

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Use the same order parameter P_∞
- With a exponent $\beta_{\rm DP}$, and $\beta_{DP} \neq \beta_P$.

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- \bullet Infection probability p
- Only along the time axis

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Use the same order parameter P_∞
- With a exponent $\beta_{\rm DP}$, and $\beta_{DP} \neq \beta_P$.

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- \bullet Infection probability p
- Only along the time axis

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Use the same order parameter P_∞
- With a exponent $\beta_{\rm DP}$, and $\beta_{DP} \neq \beta_P$.
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- $\bullet\,$ Infection probability p
- Only along the time axis

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Use the same order parameter P_∞
- With a exponent $\beta_{\rm DP}$, and $\beta_{DP} \neq \beta_P$.

Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- $\bullet\,$ Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With a exponent β_{DP} , and $\beta_{DP} \neq \beta_P$.

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

$$\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}} , \xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}} .$$
 (4)

(日) (四) (日) (日) (日)

- Independent exponents $(\beta_{\text{DP}}, \nu_{\parallel}, \nu_{\perp})$ label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics, like the Ising class for equilibrium statistical mechanics.

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

$$\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}} , \xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}} .$$
 (4)

- Independent exponents $(\beta_{\rm DP}, \nu_{\parallel}, \nu_{\perp})$ label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics, like the Ising class for equilibrium statistical mechanics.

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

$$\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}} , \xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}} .$$
 (4)

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Independent exponents $(\beta_{\rm DP}, \nu_{\parallel}, \nu_{\perp})$ label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics, like the Ising class for equilibrium statistical mechanics.

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

έ

$$\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}} , \xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}} .$$
 (4)

- Independent exponents $(\beta_{\mathrm{DP}}, \nu_{\parallel}, \nu_{\perp})$ label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics, like the Ising class for equilibrium statistical mechanics.

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

$$\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}} , \xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}} .$$
 (4)

- Independent exponents $(\beta_{\mathrm{DP}}, \nu_{\parallel}, \nu_{\perp})$ label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics, like the Ising class for equilibrium statistical mechanics.

Outline

2 Directed Percolation

Ξ.

<ロ> (日) (日) (日) (日) (日)

Figure 4: Rules for BDP

Compared with DP,

• no direction limit

- but with anisotropic infection probabilities Along time axis: $p_{\downarrow} = pp_d$ Against time axis: $p_{\uparrow} = p(1 - p_d)$
- When $p_d = 1/2$, BDP = Percolation
- When $p_d = 0, 1, BDP = DP$

< ロト (同) (三) (三)

Figure 4: Rules for BDP

Compared with DP,

- no direction limit
- but with anisotropic infection probabilities Along time axis: $p_{\downarrow} = pp_d$ Against time axis: $p_{\uparrow} = p(1 - p_d)$
- When $p_d = 1/2$, BDP = Percolation
- When $p_d = 0, 1, BDP = DP$

< ロト (同) (三) (三)

Figure 4: Rules for BDP

Compared with DP,

- no direction limit
- but with anisotropic infection probabilities Along time axis:

 $p_{\downarrow} = pp_d$ Against time axis: $p_{\uparrow} = p(1 - p_d)$

• When $p_d = 1/2$, BDP = Percolation

• When $p_d = 0, 1$, BDP = DP

< ロト (同) (三) (三)

Figure 4: Rules for BDP

Compared with DP,

- no direction limit
- but with anisotropic infection probabilities
 Along time axis:

 $p_{\downarrow} = pp_d$ Against time axis: $p_{\uparrow} = p(1 - p_d)$

- When $p_d = 1/2$, BDP = Percolation
- When $p_d = 0, 1$, BDP = DP

< ロト (同) (三) (三)

Consider a new region $1/2 < p_d < 1$,

we still use order parameter P_∞, what is β' characterizing P_∞?
Correlation length

$$\xi'_{\parallel} \sim |p - p_c|^{-\nu'_{\parallel}} \quad , \xi'_{\perp} \sim |p - p_c|^{-\nu'_{\perp}} .$$
 (5)

what are the values of ν'_{\parallel} and ν'_{\perp} ?

Consider a new region $1/2 < p_d < 1$,

we still use order parameter P_∞, what is β' characterizing P_∞?
Correlation length

$$\xi'_{\parallel} \sim |p - p_c|^{-\nu'_{\parallel}} , \xi'_{\perp} \sim |p - p_c|^{-\nu'_{\perp}}.$$
 (5)

(日) (四) (日) (日) (日)

what are the values of ν'_{\parallel} and ν'_{\perp} ?

Consider a new region $1/2 < p_d < 1$,

- we still use order parameter P_{∞} , what is β' characterizing P_{∞} ?
- Correlation length

$$\xi'_{\parallel} \sim |p - p_c|^{-\nu'_{\parallel}} , \xi'_{\perp} \sim |p - p_c|^{-\nu'_{\perp}}.$$
 (5)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

what are the values of ν'_{\parallel} and ν'_{\perp} ?

With some fixed $1/2 < p_d < 1$ values, we sample quantity P(t, p) and assume

$$P(t,p) = t^{-\beta'/\nu'_{\parallel}} f(\epsilon t^{1/\nu'_{\parallel}})$$
(6)

where $\epsilon = p - p_c$.

- Do the Taylor expansion to the equation
- Perform the least-squares fits of the Monte Carlo data to the expansion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

With some fixed $1/2 < p_d < 1$ values, we sample quantity P(t, p) and assume

$$P(t,p) = t^{-\beta'/\nu'_{\parallel}} f(\epsilon t^{1/\nu'_{\parallel}})$$
(6)

・ロト ・四ト ・ヨト ・ヨト

where $\epsilon = p - p_c$.

- Do the Taylor expansion to the equation
- Perform the least-squares fits of the Monte Carlo data to the expansion

With some fixed $1/2 < p_d < 1$ values, we sample quantity P(t, p) and assume

$$P(t,p) = t^{-\beta'/\nu'_{\parallel}} f(\epsilon t^{1/\nu'_{\parallel}})$$
(6)

where $\epsilon = p - p_c$.

- Do the Taylor expansion to the equation
- Perform the least-squares fits of the Monte Carlo data to the expansion

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

Sample quantity $\mathcal{N}(t)$, which

• is the number of active sites at time t,

∃ →

• scales as $\mathcal{N}(t) \sim t^{\eta}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure 5: Exponent η with various p_d values.

Phase Diagram

Figure 6: Phase diagram of BDP on two (left) and three (right) dimensions.

• Arrows represent the flow direction of Renormalization Group Zongzheng Zhou (Monash Uni.) Crossover from IP to DP 17/21

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2, p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c , \qquad (7)$$

≈ Y_{\odot} is quantity dependent ≈ $Y_c = 1/(\nu d_{\min})$ with $\nu = 4/3$

• For $p = 1, p_d \to 1/2,$

 $\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}}) \quad , \epsilon_d = |p_d - 1/2| ,$ (8)

 <□>
 <</td>
 >

 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 ><

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2$, $p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
(7)

• $Y_{\mathcal{O}}$ is quantity dependent • $Y_{\epsilon} = 1/(\nu d_{\min})$ with $\nu = 4/3$ • For $p = 1, p_d \rightarrow 1/2$, (2) $q_{\mathcal{O}} = q_{\mathcal{O}} Y_{\mathcal{O}} (q_{\mathcal{O}})$ (3)

▶ $Y_{Od} = Y_O$ ▶ $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うらつ

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2$, $p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
(7)

• $Y_{\mathcal{O}}$ is quantity dependent • $Y_{\epsilon} = 1/(\nu d_{\min})$ with $\nu = 4/3$ • For $p = 1, p_d \to 1/2,$ $\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}})$, $\epsilon_d = |p_d - 1/2|$, (8)

► $Y_{Od} = Y_O$ ► $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うらつ

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2$, $p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
(7)

Y_O is quantity dependent
 Y_ϵ = 1/(νd_{min}) with ν = 4/3

• For $p = 1, p_d \to 1/2,$

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}}) \quad , \epsilon_d = |p_d - 1/2| , \qquad (8)$$

► $Y_{\mathcal{O}d} = Y_{\mathcal{O}}$ ► $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2, p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
(7)

•
$$Y_{\mathcal{O}}$$
 is quantity dependent
• $Y_{\epsilon} = 1/(\nu d_{\min})$ with $\nu = 4/3$

• For $p = 1, p_d \rightarrow 1/2$,

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}}) \quad , \epsilon_d = |p_d - 1/2| ,$$
(8)

►
$$Y_{\mathcal{O}d} = Y_{\mathcal{O}}$$

► $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2$, $p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
 (7)

•
$$Y_{\mathcal{O}}$$
 is quantity dependent
• $Y_{\epsilon} = 1/(\nu d_{\min})$ with $\nu = 4/3$
• For $p = 1, p_d \to 1/2,$
 $\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}})$, $\epsilon_d = |p_d - 1/2|$, (8)

•
$$Y_{\mathcal{O}d} = Y_{\mathcal{O}}$$

• $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Consider the critical region around percolation point $(p_d = 1/2, p = 1)$.

• For $p_d = 1/2$, $p \to 1$, a certain quantity \mathcal{O} scales as

$$\mathcal{O} \sim \ell^{Y_{\mathcal{O}}} f(\epsilon \ell^{Y_{\epsilon}}) \quad , \epsilon = p - p_c ,$$
 (7)

•
$$Y_{\mathcal{O}}$$
 is quantity dependent
• $Y_{\epsilon} = 1/(\nu d_{\min})$ with $\nu = 4/3$
• For $p = 1, p_d \to 1/2,$
 $\mathcal{O} \sim \ell^{Y_{\mathcal{O}d}} f(\epsilon_d \ell^{Y_{\epsilon_d}}) , \epsilon_d = |p_d - 1/2|,$ (8)

►
$$Y_{\mathcal{O}d} = Y_{\mathcal{O}}$$

► $Y_{\epsilon_d} = 1/(\nu' d_{\min}) \neq Y_{\epsilon}$, and we estimate $Y_{\epsilon_d} = 0.500(5)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$
 (9)

• points $(p_c, p_{d,c})$ are on the transition line

• ϕ characterizes the crossover behavior from percolation to DP • $\phi = Y_{\epsilon_d}/Y_{\epsilon}$ from scaling theory.

Figure 7: Crossover exponent

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$
 (9)

- points $(p_c, p_{d,c})$ are on the transition line
- φ characterizes the crossover behavior from percolation to DP
 φ = Y_{ε,i}/Y_ε from scaling theory.

Figure 7: Crossover exponent

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$
 (9)

- points $(p_c, p_{d,c})$ are on the transition line
- ϕ characterizes the crossover behavior from percolation to DP
- $\phi = Y_{\epsilon_d}/Y_{\epsilon}$ from scaling theory.

Figure 7: Crossover exponent

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$
 (9)

- points $(p_c, p_{d,c})$ are on the transition line
- ϕ characterizes the crossover behavior from percolation to DP
- $\phi = Y_{\epsilon_d}/Y_{\epsilon}$ from scaling theory.

Figure 7: Crossover exponent

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$
 (9)

- points $(p_c, p_{d,c})$ are on the transition line
- ϕ characterizes the crossover behavior from percolation to DP
- $\phi = Y_{\epsilon_d}/Y_{\epsilon}$ from scaling theory.

Figure 7: Crossover exponent

• Use a simple BDP model to generalize Percolation and DP models

- Study the crossover effect from Percolation to DP
- Is $Y_{\epsilon_d}(\nu')$ new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. 45, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

3

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is $Y_{\epsilon_d}(\nu')$ new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. **45**, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is $Y_{\epsilon_d}(\nu')$ new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. **45**, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is Y_{ϵ_d} (ν') new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. 45, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

イロト イヨト イヨト イヨト
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is $Y_{\epsilon_d}(\nu')$ new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. **45**, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

・ロト ・御ト ・ヨト ・ヨト

Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is Y_{ϵ_d} (ν') new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. **45**, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆

Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is $Y_{\epsilon_d}(\nu')$ new or related to β , ν , d_{\min} ?
- Is Y_{ϵ_d} exactly equal to 1/2?
- Can Y_{ϵ_d} be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory ?
- (1) Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
- (2) Hao Hu, Henk W. J. Blöte and Youjin Deng, J. Phys. A: Math. Thero. 45, 494006 (2012).
- (3) Junfeng Wang, Zongzheng Zhou, Wei Zhang and Youjin Deng, in preparation.
- (4) Zongzheng Zhou, Ji Yang, Youjin Deng and Robert M. Ziff, arXiv:1112.3428, accepted by Phys. Rev. E (2012).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Many thanks for your attention!

31