Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000

Exploring the corner: Numerical evolution of Spin-2 fields at space-like infinity in Minkowski space-time.

F. Beyer, G. Doulis, J. Frauendiener and B. Whale

Department of Mathematics and Statistics, University of Otago

Funded by the Marsden Fund of the Royal Society of New Zealand, U00-09-022.

December 3, 2012

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
000000	000000000	000	000000000000000000

1 An example: Minkowski space-time

2 Numerical Results

3 Numerical replication of divergences in solutions

 ${old 4}$ Numerical calculation to ${\cal J}^+$ and beyond

- Calculation on Infinity
- Calculation beyond infinity

Minkowski space-time

The metric is

$$\tilde{g} = (dX^0)^2 - (dX^1)^2 - (dX^2)^2 - (dX^3)^2$$

Normal coordinates based at infinity are

$$x^a = -\frac{X^a}{X^b X_b}.$$

Hence

$$\tilde{g} = \frac{1}{(x^c x_c)^2} \left((dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2 \right).$$

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
000000	000000000	000	000000000000000000000000000000000000000

Let

Define

$$g = \frac{\Omega^2}{\kappa^2} \tilde{g} = dt^2 + 2t \frac{\kappa'}{\kappa} dt dr - \frac{1 - t^2 \kappa'^2}{\kappa^2} dr^2 - \frac{1}{\mu^2} d\omega^2$$

Hence $J^{\pm} = \{1 \mp t\mu = 0\}, I = \{-1 < t < 1, r = 0\},$
 $I^{\pm} = \{t = \pm 1, r = 0\}.$

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
000000	000000000	000	000000000000000000000000000000000000000

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000000000000000000000000

 $0 = \nabla^{h}{}_{c'}\phi_{abch}$

Linear spin-2 zero rest mass field

F. Beyer, G. Doulis, J. Frauendiener, B. Whale (2012). 'Numerical space-times near space-like and null infinity. The spin-2 system on Minkowski space'. arXiv:1207.5854v1

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000000000000000000000000

To express this equation in our coordinates we choose a spin frame, o^a , ι^a , adapted to t, r and write

$$\phi_{0} = \phi_{abcd} o^{a} o^{b} o^{c} o^{d},$$

$$\phi_{1} = \phi_{abcd} o^{a} o^{b} o^{c} \iota^{d},$$

$$\vdots$$

$$\phi_{4} = \phi_{abcd} \iota^{a} \iota^{b} \iota^{c} \iota^{d}.$$

Then decomposing each ϕ_i in terms of spin weighted spherical harmonics we get

$$\phi_k = \sum_{l=|k-2|}^{\infty} \sum_{m=-l}^{l} \phi_k^{lm}(t,r) \, {}_{s}Y_{lm}.$$

All subsequent equations are on the coefficients ϕ_i^{lm} but the *l* and *m* will be dropped to remove clutter.

Minkowski	space-time
0000000	

Numerical Results

$$(1+t\kappa')\partial_t\phi_0 - \kappa\partial_r\phi_0 = -(3\kappa'-\mu)\phi_0 - \mu\alpha_2\phi_1$$

$$\partial_t\phi_1 = -\mu\phi_1 + \frac{1}{2}\mu\alpha_2\phi_0 - \frac{1}{2}\mu\alpha_0\phi_2$$

$$\partial_t\phi_2 = \frac{1}{2}\mu\alpha_0\phi_1 - \frac{1}{2}\mu\alpha_0\phi_3$$

$$\partial_t\phi_3 = \mu\phi_3 - \frac{1}{2}\mu\alpha_2\phi_4 + \frac{1}{2}\mu\alpha_0\phi_2$$

$$(1-t\kappa')\partial_t\phi_4 + \kappa\partial_r\phi_4 = (3\kappa'-\mu)\phi_4 + \mu\alpha_2\phi_3$$

 $0 = -2\kappa \partial_r \phi_1 + 6r\mu' \phi_1 - 2t\kappa' \mu \phi_1 + \mu \alpha_0 (1 - t\kappa') \phi_2 + \mu \alpha_2 (1 + t\kappa') \phi_0$ $0 = -2\kappa \partial_r \phi_2 + 6r\mu' \phi_2 + \mu \alpha_0 (1 - t\kappa') \phi_3 + \mu \alpha_0 (1 + t\kappa') \phi_1$ $0 = -2\kappa \partial_r \phi_3 + 6r\mu' \phi_3 + 2t\kappa' \mu \phi_3 + \mu \alpha_0 (1 + t\kappa') \phi_2 + \mu \alpha_2 (1 - t\kappa') \phi_4$

Minkowski	space-time
0000000	

Numerical Results

Divergences 000 To infinity and beyond!

$$(1+t\kappa')\partial_t\phi_0 - \kappa\partial_r\phi_0 = -(3\kappa'-\mu)\phi_0 - \mu\alpha_2\phi_1$$
$$\partial_t\phi_1 = -\mu\phi_1 + \frac{1}{2}\mu\alpha_2\phi_0 - \frac{1}{2}\mu\alpha_0\phi_2$$
$$\partial_t\phi_2 = \frac{1}{2}\mu\alpha_0\phi_1 - \frac{1}{2}\mu\alpha_0\phi_3$$
$$\partial_t\phi_3 = \mu\phi_3 - \frac{1}{2}\mu\alpha_2\phi_4 + \frac{1}{2}\mu\alpha_0\phi_2$$
$$(1-t\kappa')\partial_t\phi_4 + \kappa\partial_r\phi_4 = (3\kappa'-\mu)\phi_4 + \mu\alpha_2\phi_3$$

 $\begin{aligned} 0 &= -2\kappa\partial_r\phi_1 + 6r\mu'\phi_1 - 2t\kappa'\mu\phi_1 + \mu\alpha_0(1 - t\kappa')\phi_2 + \mu\alpha_2(1 + t\kappa')\phi_0 \\ 0 &= -2\kappa\partial_r\phi_2 + 6r\mu'\phi_2 + \mu\alpha_0(1 - t\kappa')\phi_3 + \mu\alpha_0(1 + t\kappa')\phi_1 \\ 0 &= -2\kappa\partial_r\phi_3 + 6r\mu'\phi_3 + 2t\kappa'\mu\phi_3 + \mu\alpha_0(1 + t\kappa')\phi_2 + \mu\alpha_2(1 - t\kappa')\phi_4 \end{aligned}$

Minkowski space-time ○○○○○○●	Numerical Results	Divergences 000	To infinity and beyond!

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	•00000000	000	000000000000000000000000000000000000000

Numerical method

- Method of lines with standard Runge-Kutta 4 ODE solver.
- Adaptive time step based on CFL condition and characteristic speeds.
- A summation by parts finite difference operator for calculation of spatial derivatives.
- External boundaries and internal domain interfaces implemented using a penalty method (simultaneous approximation term).
- No dissipation.

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000000000000000000000000

Semi-discrete formula for the boundary implementation

$$\partial_t \phi_0 = \frac{1}{1 + t\kappa'} \left(\kappa \partial_r \phi_0 - (3\kappa' - \mu)\phi_0 - \mu \alpha_2 \phi_1 \right)$$

$$\partial_t \phi_0 = \frac{1}{1+t\kappa'} \left(\kappa Q \phi_0 - (3\kappa'-\mu)\phi_0 - \mu \alpha_2 \phi_1 \right) \\ -\tau_1(\phi_{0,N} - b_r(t)) \frac{\kappa_N}{1+t\kappa'_N} H^{-1}(0,0,\ldots,1)^T$$

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	0000000000	000	000000000000000000000000000000000000000

Convergence of ϕ_0 at time = 1.0

Figure: Convergence of ϕ_0 to the exact solution at time t = 1.

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!

Convergence of ϕ_4 at time = 1.0

Figure: Convergence of ϕ_4 to the exact solution at time t = 1.

Minkowski space-time	Numerical Results	Divergences 000	To infinity and beyond!
-			

Convergence against exact solution

	ϕ_0		ϕ_4	
Grid Points	$\log_2(\Delta _2)$	Rate	$\log_2(\Delta _2)$	Rate
50	-24.90		-11.32	
100	-29.06	4.16	-14.25	2.92
200	-33.38	4.32	-17.33	3.08
400	-37.78	4.40	-20.49	3.16
800	-42.22	4.44	-23.69	3.20

Table: Absolute error Δ compared to the exact solution using the L^2 norm and convergence rates at time t = 1 for ϕ_0, ϕ_4 . The calculation was done with a fixed time-step.

0000000	000000000	000	000000000000000000000000000000000000000
~		 	

Convergence against numerical solution

	ϕ_0		ϕ_4	
Grid Points	$\log_2(\Delta _2)$	Rate	$\log_2(\Delta _2)$	Rate
50	1.45		2.23	
100	-2.51	3.96	-1.65	3.88
200	-6.48	3.97	-5.65	4.00
400	-10.56	4.08	-9.73	4.08

Table: Convergence rates of the absolute error Δ in the L^2 norm at t = 1.0 for compactly supported initial data. The error is computed with respect to a higher resolution run with 800 grid points.

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000000000000000000000000

If we expand each ϕ_k in terms of r,

$$\phi_k^{lm}(t,r) = \sum_{p=|s|}^{\infty} \sum_{l=|s|}^{p} \frac{1}{p!} \phi_{k,p}^{lm}(t) r^p, \quad \text{with } s = 2 - k,$$

then the first terms that contain divergent expressions are

$$\phi_{k,2}^{2,m}(t)=\frac{1}{2}\partial_{rr}\phi_k(t,0).$$

An exact solution exists so that

$$\phi_{4,2}^{2,m}(t) = -16 - 19t - 12t^2 - 3t^3 + rac{3}{2}(1+t)^4$$
atanh $(t).$

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
000000	000000000	000	000000000000000000000000000000000000000

Figure: The first singular coefficient $\phi_{4,2}^{2,m}$ along r = 0 for times $0 \le t \le 1$.

Figure: Relative error in the computation of the first singular coefficient $\phi_{4,2}^{2,m}$ along r = 0 for times $0.98 \le t \le 1$.

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!

$$(1+t\kappa')\partial_t\phi_0 - \kappa\partial_r\phi_0 = -(3\kappa'-\mu)\phi_0 - \mu\alpha_2\phi_1$$
$$\partial_t\phi_1 = -\mu\phi_1 + \frac{1}{2}\mu\alpha_2\phi_0 - \frac{1}{2}\mu\alpha_0\phi_2$$
$$\partial_t\phi_2 = \frac{1}{2}\mu\alpha_0\phi_1 - \frac{1}{2}\mu\alpha_0\phi_3$$
$$\partial_t\phi_3 = \mu\phi_3 - \frac{1}{2}\mu\alpha_2\phi_4 + \frac{1}{2}\mu\alpha_0\phi_2$$
$$(1-t\kappa')\partial_t\phi_4 + \kappa\partial_r\phi_4 = (3\kappa'-\mu)\phi_4 + \mu\alpha_2\phi_3$$

Minkowski space-time	Numerical Results	Divergences	To infinity and beyond!
0000000	000000000	000	000000000000000000000000000000000000000

At
$$r = 0$$
: $(1 - t)\partial_t \phi_4 = 2\phi_4 + \alpha_2 \phi_3$.

At
$$t = 1$$
: $r\partial_r\phi_4 = 2\phi_4 + \alpha_2\phi_3$.

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!
Last step for ϕ_4			

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!
Results			

	ϕ_0		ϕ_4	
Grid Points	$\log_2(\Delta _2)$	Rate	$\log_2(\Delta _2)$	Rate
200	-7.99		0.082	
400	-11.48	3.49	-0.44	0.52
800	-14.98	3.49	-1.02	0.57
1600	-18.48	3.50	-1.73	0.71
3200	-22.07	3.58	-2.81	1.08

Table: Absolute error Δ compared to a 6400 grid point simulation using the L^2 norm and convergence rates at time t = 1 for ϕ_0, ϕ_4 . The calculation was done with an adaptive time-step that the Euler step scheme.

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!

Minkowski space-time 0000000	Numerical Results	Divergences 000	To infinity and beyond!
Results			

	ϕ_0		ϕ_4	
Grid Points	$\log_2(\Delta _2)$	Rate	$\log_2(\Delta _2)$	Rate
100	-28.29		-3.82	
200	-31.70	3.41	-4.19	0.38
400	-35.19	3.49	-4.42	0.22
800	-38.70	3.51	-6.05	1.63

Table: Absolute error Δ compared to an exact solution L^2 norm and convergence rates at time t = 1.1 for ϕ_0, ϕ_4 . The calculation was done with a fixed time-step.

Errors in ϕ_0 at time 1.1

-50

1

0.9

0.8

-50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Minkowski	space-time	Numer
0000000		00000

lumerical Results

Divergences 000 To infinity and beyond!

 $0 = \nabla^{h}{}_{c'}\phi_{abch}$

Linear spin-2 zero rest mass field

F. Beyer, G. Doulis, J. Frauendiener, B. Whale (2012). 'Numerical space-times near space-like and null infinity. The spin-2 system on Minkowski space'. arXiv:1207.5854v1