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• Review  of duality between N=4 
supersymmetric planar 4d gauge theory  
and superstring  theory in  

• Some recent progress                         
Beccaria,  Roiban,  Giombi, Macorini,  AT                                             
arXiv:1203.5710, arXiv: 1205.3656

AdS5 ⇥ S5
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• Last 10 years:  enormous progress of 
understanding gauge theory - string theory  
duality based on integrability

• Promise of first exact solution of a 4d QFT  
as well as  string theory in curved background

• Remarkable connections with different areas  
of mathematical physics: integrable spin 
chains, integrable 2d sigma models on 
supercosets, 2d CFT’s, 4d CFT’s                 
stimulates  research in related areas
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• Maximally symmetric example:                             
N=4 super Yang-Mills  theory   dual to          
superstring theory in  

• N=4  SYM is a 4d Conformal Field Theory                
plus it is integrable in planar limit: spectrum of 
dimensions from  integrable system          
(integrability  rare  in 4d QFT: at 1-loop only even 
in  N=2  SYM)

•  string theory is a based on a 2d CFT:         
integrable conformal sigma model  (integrability 
rare for 2d s-models: G/H cosets,  gauged WZW, 
few pp-waves,  not much more)

AdS5 ⇥ S5

AdS5 ⇥ S5
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N=4 SYM as ‘‘harmonic oscillator’’ of 4d QFT
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�

conformal SO(2,4), global SO(6), Q- and S-supersymmetry
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What does it mean to solve   4d CFT:

Planar theory:  SU(N), N ! 1, � = g2YMN=fixed
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What   does it mean to solve string theory:

Compute   spectrum of energies   of string  states  

find corresponding   vertex operators and their 
correlations functions (scattering amplitudes)

String in AdS5 ⇥ S5
:

tension T =

R2

4⇡↵0 =

p
�

4⇡

Spectrum:

energy as function E of tension or �
and conserved charges (mode numbers)
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Notation: D = �
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[ a priori ]
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•  The two sides of the correspondence out in 

Chapter 2

Matching string and gauge theory in

AdS/CFT

In this chapter we summarize the basic strategy of comparing semiclassical string the-

ory for long operators, i.e. string configurations with large quantum numbers, to gauge

theory predictions. A useful reference is as usual [301]

2.1 General discussion

The two sides of the correspondence can be worked out in opposite regimes. On the string

side we access the weakly coupled -model which is

(2.1)

On the gauge theory side we can do perturbation theory in small planar coupling

(2.2)
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string theory 

conformal theory 

•  states                  have a dependence : Equality easily checked For BPS states, the dependence on is trivial and we can check the matching. For non-BPS

states, things are in principle much more difficult.

A first way out is offered by near-BPS states in the BMN limit. One considers gauge theory

operators of the form

Tr (2.3)

where, for instance, and are combinations of scalars building the sector.

In the limit of large length and small density of impurities, this operators are dual to a

small closed string rotating along a big circle of with angular velocity . In the

limit higher order -model corrections are suppressed and one can match with

gauge theory.

This behaviour can be generalized to multispin solutions rotating in .

In general, classical solutions do not depend on which is a prefactor of the action

(2.4)

The energy and integral motions of the classical solution depend on a finite set of param-

eters

(2.5)

Typically, for multispin solutions one has

(2.6)
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         , dual to 
 
     (dilute limit)  

What about states ? 

Tr(ZL)

J � 1
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• gauge-string duality:  spectrum  of gauge 
dimensions  = spectrum of string  energies   
but perturbative expansions   are opposite                      

• how to compute   dimensions of gauge 
theory operators exactly? 

• how to compute string energies  exactly? 

• Answer: exact description by  common 
integrable  2d system 

To sum up:
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Gauge theory anomalous dimensions:

⌫
µ
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Local interactions!

(γ from d logZA
B/dlogΛ#

  plus symmetry...)#
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• Dilatation operator not known explicitly beyond   4 loops --  
but can  make  assumption of all-order integrability and then 
verify its consistency 

• Bethe Ansatz  generalized to   higher loops                            
for ``long’’ operators [Asymptotic Bethe Ansatz]

• Checked  against available perturbative data and general 
principles (crossing of magnon S-matrix, etc.)

One-loop  Bethe Ansatz

Beyond one loop ?
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Extension to full  psu(2,2|4) spin chain
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R = TR=T

Asymptotic Bethe Ansatz equations
 [Beisert,Eden, Staudacher 2006]

BES dressing phase
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• Non-trivial phase  fixed   using  additional  
assumptions (crossing, etc.) -- existence of 
underlying integrable 2d system 

• Generalization to ``short`` operators  of any 
length:   include finite-size effects (wrapping  
contributions) 

• Hint from string side - analogy with 2d models - 
generalize ABA to TBA Thermodynamic Bethe 
Ansatz  (Y-system,  etc)

• Use of string sigma-model picture: R2 ! R⇥ S1
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Gauge theory/discrete chain, Bethe Ansatz 

String theory/continuum σ model, thermodynamical Bethe Ansatz 

The interaction range  
increases with loop order 

Idea: lenght       temperature  

Wrapping corrections are very 
difficult (exponentially suppr.) 

???!

$

(Zamolodchikov) 

L = 8 

For integrable models TBA equations are related to 
universal Y-systems

Mirror theory (S-matrix, ABA, ...)
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•  Ya,s are related to the densities of  
particular clustered solutions of BA  
equations in the continuum limit 

•  Can be put in Hirota form  

[Zamolodchikov , Krichever, Zabrodin, ....] 

[Symmetry as input !]
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E =

MX

j=1

⇥ph1 (zj) +
1X

a=1

Z

R

dz

2�i

⇤⇥mir
a (z)

⇤z
log(1 + Y mir

a,0 )

Fat hook diagram  for psu(2,2|4) 

The determine the spectrum 

SU(2|2)2 wings 

State      boundary conditions!$

Gromov, Kazakov, Vieira, ... (2009-2012)

[need  ABA and extra analyticity 
constraints as input]
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• Exact ABA results so far:                         
(i) BES equation for scaling function (2006)
(ii) exact slope  function  (2011)

• TBA  results so  far:                         
Konishi dimension to 7-th (8-th ?) loop,  
numerical computation  starting from weak   
coupling              match   with strong 
coupling expansion from string theory side    
(2009-2012)

!
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fermions
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•  Green-Schwarz-Metsaev-Tseytlin action  

•  Very LF (already in flat space). 

Da = �aX
M DM

RR five form 
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•  Coset σ model  

3.2 GS action for

General references are Metsaev-Tseytlin, Mc Loughlin thesis, and Callan plus Mc Lough-

lin. Here we follow the summary in [5]. Very useful is also the recent review by Zarembo

[1].

3.2.1 Group structure

String theory on can be defined via a -model on a coset space. Technically, the

coset model provides a simple way to couple to Ramond-Ramond fields. This construc-

tion is due to Metsaev and Tseytlin (in 1998) , following the corresponding construction

of superstring action in 10d flat space by Henneaux and Mezincescu. The coset space is

(3.1)

The bosonic part of is 1

(3.2)

Thus the bosonic part of the coset space is

(3.3)

The superalgebra su is a non compact real form of sl . This is the algebra of

supermatrices over complex numbers

(3.4)

with zero supertrace

(3.5)
1The rank of , , and is .
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symmetry 

•  Internal 4° order automorphism 

The real form is defined by

(3.6)

The identity is a central element. Removing it we obtain psu which has no repre-

sentation in terms of supermatrices.

The algebra su admits an automorphism (and on bosons). It takes

the form

(3.7)

which can be used to filter

g su g g g (3.8)

Notice that the 0-th degree part is

g so so (3.9)

3.2.2 The action

Let us consider an element . The Lie algebra valued form

(3.10)

is flat in the sense that

(3.11)
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The Lagrangian density is

L (3.12)

where is the worldsheet metric and . Right multiplication of by an element

of gives a local symmetry. The identity gives also invariance, so

we get a Lagrangian which depends on cosets as desired.

The term involves fermions. Imposing symmetry under left multiplication of by odd

elements we obtain and elimination of 16 fermionic degrees of freedom leaving

16 physical fermionic degrees of freedom ( -symmetry).

33

Metsaev, AT 1998

=1

4

4
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•  The string equations of motion can be put in Lax form 

3.3 Classical integrability and algebraic curve

In full generality one wants to write the string equations of motion in the form

(3.13)

(3.14)

where is a -vector and are matrices, the Lax connection. The variable is the

spectral parameter. Compatibility requires to be flat

(3.15)

Once this happens, we can define the monodromy matrix

(3.16)

whose trace is independent on , due to flatness, and generates the conserved integrals of

motion.

Figure 3.1: The trace of the monodromy matrix.
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 infinite set of conserved charges
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•  Such a Lax connection indeed exists 

Actually, we shall be interested in the eigenvalues of which are invariant under

changes of the initial point of the string. As shown by [314], there is indeed a Lax connec-

tion for the string. This takes the form (we emphasize the dependence on the

spectral parameter)

(3.17)

where (in addition to the -symmetry condition we must impose

(3.18)

The eigenvalues of can be written

(3.19)

The first four are bosonic, the other four fermionic. The eigenvalues and have

singularities at and at those values where two eigenvalues coincide. A detailed

analysis of these singularities shows that they can be poles or branch points at collapsing

points plus essential singularities at . These are removed by considering

(3.20)

The eigenvalues

(3.21)

have only branch points or poles and lie thus on an algebraic curve 2.

It is interesting to see all this in more details in a special reduction leaving to most general

discussion of the full algebraic curve to [275].

2A very useful introduction is [299].
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lie on an algebraic curve with only poles or branch points in z 
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3.3.1 The reduced R model

We thus consider the R -model. The coordinates are on , with ,

and on R. The coordinates are conveniently arranged in a element

(3.22)

The string action is

(3.23)

(3.24)

The left and right multiplication gives symmetries generated

by the currents

(3.25)

These symmetries have a counterpart in the gauge theory where we consider operators of

the form with and charges and .

In the gauge we compute the energy

(3.26)
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 local symmetries and currents 

R⇥ S3
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•  The resolvent is with 

The equations of motions are (in light cone coordinates , and )

(3.27)

They must be supplemented by current conservation

(3.28)

and Virasoro constraints.

(3.29)

The equations of motion plus the conservation of current imply that the following Lax

connection, depending on an arbitrary spectral parameter is flat

(3.30)

According to the general scheme we introduce the monodromy

(3.31)

Its eigenvalues are thus

(3.32)

The expansion of around generates in the expansion the conserved charges

starting with and . Besides, around we have

(3.33)

The so-called resolvent

(3.34)

is analytic on the physical sheet with possible branch cuts. It can be represented as the

integral of a density supported on the cuts

(3.35)
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Hence, the jump is

(3.36)

The continuous part on the cuts is

(3.37)

where is specific of the cut. In terms of the resolvent

(3.38)

Now, at least at one-loop, it is easy to show that these are equivalent to the continuum

limit of the Bethe Ansatz equations for the model

(3.39)

To see this, we take the logarithm and rescale . Expanding for large we get

(3.40)

Let us now take again (2.35) and redefine where is the coupling. We find

using the expression of the energy

(3.41)

At one loop we have and the two expressions coincide !

38

Riemann-Hilbert problem 

•  Nothing but the continuous limit of  
  XXX-1/2 Bethe equations 
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using the expression of the energy

(3.41)

At one loop we have and the two expressions coincide !
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Finite gap solutions   vs  scaling limit of BA equations 
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For BPS states, the dependence on is trivial and we can check the matching. For non-BPS

states, things are in principle much more difficult.

A first way out is offered by near-BPS states in the BMN limit. One considers gauge theory

operators of the form

Tr (2.3)

where, for instance, and are combinations of scalars building the sector.

In the limit of large length and small density of impurities, this operators are dual to a

small closed string rotating along a big circle of with angular velocity . In the

limit higher order -model corrections are suppressed and one can match with

gauge theory.

This behaviour can be generalized to multispin solutions rotating in .

In general, classical solutions do not depend on which is a prefactor of the action

(2.4)

The energy and integral motions of the classical solution depend on a finite set of param-

eters

(2.5)

Typically, for multispin solutions one has

(2.6)
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•  Smooth scaling limit of multi-spins, energy, etc 

with � ! 1E =

E�
�
= fixed

J =

J�
�
= fixed . . .

This expansion looks like a perturbative gauge theory expansion

(2.7)

and matching is possible if the model corrections are suppressed for large . In general

one has

(2.8)

In rotating solutions one finds typically

(2.9)

and indeed a comparison with gauge theory is non trivial after taking large in

(2.10)

The matching of terms is indeed non trivial and can be spoiled at some order since the

two computations are done in opposite order of limit. In string theory, we take large

with fixed and then send to zero. In gauge theory, we send and then

take the large limit.

However, the structural similarity is important and permits the qualitative comparison

of the two sides of the correspondence with the introduction of interpolating functions.

This is well understood in the case of a folded string rotating in with spin .

Its dual in the gauge theory are twist-2 operators of the form

(2.11)
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σ-model energy expansion: 

Tr(�L�1DS
+�)

0 �! � �! 1

•  Example of gauge/gravity correspondence: Twist operators/folded string in AdS3 

classical solutions with  
simple geometry 

,
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•  Folded spinning string in AdS3 

  classical solution of the form  

while in Appendix D we evaluate the leading correction due to the (exponentially suppressed)

contributions that we neglect in the main calculation. In Appendix E we consider an alternative

approach to the expansion of the one-loop energy in the large spin limit. Appendix F relates

our exact results to the perturbative expansion of the associated determinants.

2 Review of folded spinning string solution in AdS3

The folded spinning string in AdS3 space

ds2 = � cosh2 ⌅ dt2 + d⌅2 + sinh2 ⌅ d⌥2 (2.1)

is a classical closed string solution given by [1]

t = ⇥ ⌃, ⌥ = � ⌃, ⌅ = ⌅(⇧) = ⌅(⇧ + 2⇤), (2.2)

where ⇥,� are constant parameters. The equation of motion in conformal gauge6 and its solution

with initial condition ⌅(0) = 0 are 7

⌅�2 = ⇥2 cosh2 ⌅� w2 sinh2 ⌅, (2.3)

sinh ⌅(⇧) =
k⇤

1� k2
cn(� ⇧ +K, k2) , ⌅�(⇧) = ⇥ sn(� ⇧ +K | k2) , (2.4)

where K ⇥ K(k2) is the complete elliptic integral of the first kind [33], with elliptic modulus

given by k ⇥ �
⌅ .

8 Here ⌅ varies from 0 to its maximal value ⌅0, which is related to the useful

parameter � or k by

coth2 ⌅0 =
�2

⇥2
⇥ 1 + � ⇥ 1

k2
. (2.5)

The periodicity implies an extra condition for the parameters

2⇤ =

� 2⇥

0
d⇧ = 4

� ⇤0

0

d⌅⇥
⇥2 cosh2 ⌅� �2 sinh2 ⌅

(2.6)

integrating which one finds (see 2.5)

⇥ =
2 k

⇤
K, � =

2

⇤
K. (2.7)

6We use Minkowski signature in both target space and world sheet, so that in conformal gauge
⇤
�g gab =

�ab = diag(�1, 1).
7To construct the full (2⇥ periodic) folded closed string solution one should glue together four such functions

⇤(⌅) on �
2 intervals and cover the full 0 ⇥ ⌅ ⇥ 2⇥ interval.

8See Appendix A for notation. We adopt here the Abramowitz-Mathematica notation for the modulus of the

elliptic functions.
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•  Equations of motion compatible with Virasoro constraints and solution  
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k =
�

⇥

•  Maximal extension is the only free parameter 
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•  , fluctuations around an almost static solution, usual Euclidean trick 
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Figure 1: Plot (blue, solid curve) of the classical energy E0 as a function of the spin S, compared

with the large spin expansion (red, dotted curve) in (2.13), and the small spin expansion (gold,

dashed curve) in (2.15).

3 One-loop correction to the spinning string energy

As discussed in [3], one can compute the leading quantum correction to the energy of this

solution by expanding the action to quadratic order in fluctuations near the classical solution

⇥I = �
⇧
⇥

4⇤

�
d⇧

� 2�

0
d⌅ ( ⇥LB + ⇥LF ) (3.1)

and computing the corresponding partition function expressed in terms of determinants of the

quadratic fluctuation operators. Then (switching to the euclidean time ⇧ ⇤ i ⇧) the 1-loop

correction to the energy can be found from the 2d e⇤ective action � by dividing over the time

interval (t = � ⇧)

E1 =
�

� T , T ⇥
�

d⇧ ⇤ ⌅, � = � lnZ (3.2)

where Z is given by the ratio of the fermionic and bosonic determinants.

Since the above rigid spinning string solution is stationary, the coe⌅cients in the fluctuation

Lagrangian do not depend on ⇧ . Then the relevant 2-d functional determinants may be reduced

to 1-d determinants as in

ln det[�⌃2
⇥ � ⌃2

⇤ +M2(⌅)] = T
� +⇥

�⇥

d⇥

2⇤
ln det[�⌃2

⇥ + ⇥2 +M2(⌅)] (3.3)

6

ratio of functional  
determinants 

•  The effective action is reduced to (coupled)  Schrodinger functional determinants. 

   Simple 1d example: 
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Figure 1: Plot (blue, solid curve) of the classical energy E0 as a function of the spin S, compared

with the large spin expansion (red, dotted curve) in (2.13), and the small spin expansion (gold,

dashed curve) in (2.15).

3 One-loop correction to the spinning string energy

As discussed in [3], one can compute the leading quantum correction to the energy of this

solution by expanding the action to quadratic order in fluctuations near the classical solution

⇥I = �
⇧
⇥

4⇤

�
d⇧

� 2�

0
d⌅ ( ⇥LB + ⇥LF ) (3.1)

and computing the corresponding partition function expressed in terms of determinants of the

quadratic fluctuation operators. Then (switching to the euclidean time ⇧ ⇤ i ⇧) the 1-loop

correction to the energy can be found from the 2d e⇤ective action � by dividing over the time

interval (t = � ⇧)

E1 =
�

� T , T ⇥
�

d⇧ ⇤ ⌅, � = � lnZ (3.2)

where Z is given by the ratio of the fermionic and bosonic determinants.

Since the above rigid spinning string solution is stationary, the coe⌅cients in the fluctuation

Lagrangian do not depend on ⇧ . Then the relevant 2-d functional determinants may be reduced

to 1-d determinants as in

ln det[�⌃2
⇥ � ⌃2

⇤ +M2(⌅)] = T
� +⇥

�⇥

d⇥

2⇤
ln det[�⌃2

⇥ + ⇥2 +M2(⌅)] (3.3)

6
•  The details of the functional determinants (the hard part) 

Quantum string corrections:   start from string action  and  
expand near solitonic  string solution

e.g. single gap Lame,etc
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(derived from full  set of ABA equations)

(� = ei✓)
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Summary
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Another exact result - slope function - 
coefficient in short string limit

[Similar exact expressions  found for some BPS  Wilson Loops 
by Feynman graph summation or localization]
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7-loop result:
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(8-loop result is to appear....)
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they match? 

= 2 + �(�)
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(from TBA)
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Some details:
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= 2 + �(�)
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• Pohlmeyer reduction: towards 1st-principles 
solution of string theory --  from GS superstring 
action to  gauged WZW + integrable potential    
(i) resolution of non-ultralocality problem and 
possible lattice version?    [Delduc, Magro, Vicedo, ... ]      
(ii) exact S-matrix as q-deformation of magnon S-
matrix;      2-parameter  generalization of TBA                          
[Hoare,  AT; Beisert, Koroteev;  Hollowood, Miramontes;  Arutyunov et al, ...] 

• Similar TBA solution for other 

• 3-point functions for ‘‘long’’ operators  
using integrability [Gromov,  Vieiera,  Foda,  Kostov, ...] 

AdS3 ⇥ S3 ⇥ T 4

AdS2 ⇥ S2 ⇥ T 6integrable supercoset   models 

AdS4 ⇥ CP 3

Progress in other directions:
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