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Crystals

Crystals are invariant under discrete translations and rotations.

Atomic structure can be modelled with periodic lattices.
Translational symmetry and 2-, 3-, 4-, 6-fold rotational symmetries.

Silicon (Si)
– hexagonal lattice

Sodium Chloride (NaCl)
– square lattice
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Quasi-periodicity in Nature

Both exhibit 5-fold rotational symmetry but no translational:

Atomic model of
Al-Pd-Mn quasicrystal
surface

Mosaic on the wall of
Darb-e Imam Shrine
in Isfahan, Iran, circ. 1450
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Quasi-periodic Tilings

possess no translational symmetry, only ‘forbidden’ rotational
symmetry

Penrose tiling with rhombi
5-fold symmetry

Square-Triangle tiling
12-fold symmetry
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Quasi-periodic and Random Tilings

Quasi-periodic tiling – projection of a cut of a n-dimensional cube
by a plane with an irrational slope.
Random tiling – projection of a cut of a n-dimensional cube by a
surface.
n= 9:

Quasi-periodic tiling Random tiling
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I Random tilings are entropic models for quasicrystals. They do
not require strict matchings and still exhibit ‘forbidden’
rotational symmetries in a statistical sense.

I Square-Triangle tiling was recently found to be related to
puzzles of Knutson–Tao–Woodward, which compute
Littlewood–Richardson coefficients.
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Square-Triangle-Rhombus Tiling Model

Square-Triangle tiling Rhombus tiling

Exact results for the square-triangle tiling model were obtained by
Widom and Kalugin. Solved using the algebraic Bethe Ansatz by
de Gier and Nienhuis.
In unpublished work de Gier and Nienhuis proposed an extension of
square-triangle tiling with a new ‘thin rhombus’ tile:
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Formulating the problem
New model consists of filling a region of the plane with squares,
triangles and thin rhombi in restricted orientations as shown:

weight( ) = u, weight(�)=eµ, weight(all other tiles) =1.

Want to compute entropy σ as a function of u and µ

ZA =
∑

config

weight(config),

σ(u, µ) = lim
A→∞

logZ

A
− log u n − µ n�
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Correspondence between the 10-Vertex Model and the
Square-Triangle-Rhombus Tiling.
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10-Vertex Model

S-T-R tiling

Cruicially, this lattice model is integrable. Can use the transfer
matrix method and the method of algebraic Bethe Ansatz to
compute σ.

10 / 27



Deformed M × N lattice with p.b.c. and associated propagation of
two types of particles: ‘2’s and ‘3’s.

r s0 s+ s− t+ t−

3 3

3 3

22

2 2
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I The eigenvalue Λ of the transfer matrix is given by:

Λ(u) = uN
M1∏
i=1

1

u − ui
+ e−M2µ

M1∏
i=1

1

ui − u

M2∏
j=1

1

u − vj
+

+ e(M1−M2)µ
M2∏
j=1

1

vj − u
.

Two types of particles / Bethe Ansatz root types:
M1 of ui and M2 of vj .

I The Bethe Ansatz equations is a coupled system of non-linear
equations:

uNi + (−)M1

M2∏
j=1

e−µ

ui − vj
= 0,

1 + (−)M2

M1∏
i=1

e−µ

ui − vj
= 0.
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Taking the logarithm of both sides, the BA equations can be rewritten as

N ln(ui ) +
M2∑
j=1

ln(u − vj)− (M1 − 1)iπ + µM2 = 2πiIi , Ii ∈ Z,

M1∑
i=1

ln(ui − v)− (M2 − 1)iπ + µM1 = 2πi Ĩj , Ĩj ∈ Z

Define F1(u) and F2(v):

F1(u) = ln(u) +
1

N

M2∑
j=1

ln(u − vj) + m2µ, m2 =
M2

N
,

F2(v) =
1

N

M1∑
i=1

ln(ui − v) + m1µ, m1 =
M1

N

Then the BA equations and Λ can be rewritten in terms of F1 and F2:

Re [F1(ui )] = Re [F2(vj)] = 0,

Λ(u) = uNeNm1µ
(

e−NF1(u) + e−NF1(u)−NF2(u) + e−NF2(u)
)
.
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Differentiating F1 and F2 and taking the thermodynamic limit (N →∞)
the root density functions f1 and f2 are given by a system of integral
equations:

f1(u) =
1

u
− 1

2πi

∫
V

f2(v)

v − u
dv

f2(v) = − 1

2πi

∫
U

f1(u)

u − v
du.

f1 is analytic on C\V ∪ {0} and f2 is analytic on C\U.

V U

ΓU
ΓV

We are interested in the analytic continuation of f1 across the cut V ,

moving along the path ΓV , and, similarly, in the analytic continuation of

f2 across the cut U, moving along the path ΓU .
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For a general linear combination,

G (z) = a1f1(z) + a2f2(z),

If endpoints of V and U coincide, then closed path Γ necessarily
crosses both V and U.

The analytic continuations of G (z) along Γ = ΓUΓV is given by the
monodromy matrix:

Γ :

(
a1
a2

)
7→
(

0 −1
1 1

)(
a1
a2

)
.

and we observe that the monodromy group is isomorphic to Z6:

(ΓUΓV )6 = I
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Figure : Bethe Ansatz roots (for N = 152, M1 = 160, M2 = 39, and
γ = −0.07). The roots {vj} and {ui} lie on a curves V and U
respectively, in the complex plane.
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f1 and f2 are made single-valued functions with the change of
variables:

t =

(
zb−1 − 1

1− zb∗−1

)1/6

, z = b
1 + t6

1 + bb∗−1t6
,

z = b 7→ t = 0

z = b∗ 7→ t →∞

In the original variable z , f1 and f2 correspond to different sheets of
the Riemann surface of the same function G (z).

b is parametrised as follows:

b = i |b|e−iγ , γ ∈ (−π/2, π/2).

18 / 27



G (z)dz

F2
F2

F1 + F2

F1

F1 U

V

Images of the Bethe Ansatz
roots in the t-plane.

The t-plane is divided into
12 sectors.

Dots placed at points z = 0
and z =∞, with z = 0 lying
on the lines corresponding to
the images of the V -cut.
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Reconstructing G (z)dz from its singularities

G (z)dz =
12∑
k=1

rk
t − tk

dt.

We find

G (z) =
1

z

(
t + t−1√

3
− C (t + t−5)− C ∗(t−1 + t5)

)
,

C =
1

2
√

3 cos γ

(
eiγ + e2iγ/3(im1 − eiπ/6(1 + m2))

)
.

The images of U and V in the t-plane meet at t = 0 and t =∞,
which implies that the G (z)dz vanishes there and that C = 0.
This fixes m1 and m2 to be:

m∗1 =
2√
3

cos
π + γ

3
,

m∗2 =
2√
3

cos
γ

3
− 1.
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The eigenvalue Λ can be calculated by considering the following
integral,

I (θ, γ) = Re

∫ eiθ

0

t + t−1

z
√

3

dz

dt
dt.

Fi (u) are given by I (θ, γ) for appropriate intervals of θ, where

u(θ, γ) = |b(γ)| cos 3θ

sin(γ − 3θ)
.
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Recall that Λ was given in terms of Fi s:

1

N
log Λ(u) = m1µ+ log(u)−min Re {F1(u),F1(u) + F2(u),F2(u)}

We find the largest eigenvalue

1

N
log Λmax(u) = m1µ+ log(u)− I (θ, γ) ,

with θ ∈
(π

6
,
π

2

)
and γ ∈

(
0,
π

2

)
Using the Legendre transformation, we were able to compute the entropy
in terms of tile tensities: nr and ns+

σ(n∗s+ , n
∗
r ) = µ(m1 − n∗s+) + (1− n∗r ) log(u)− I (θ, γ) .
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Bulk entropy σ

Can solve for nr and ns+ in terms of u and µ(γ), and for all other tile
densities in terms of nr , ns+ and BA root densities m1,m2.

σ

√
3
4 nt

1
2nr

Bulk entropy σ as a function of the total triangle area fraction
√
3
4 nt
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Previously known results without rhombi, ie. u = 0
Bulk entropy σ as a function of the total triangle area fraction
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Line of maximum entropy and symmetry

σ

√
3
4 nt

1
2nr

ns− = ns0
nt− = nt+

r s0 s+ s− t+ t−

Densities on the line of maximum entropy in terms of γ are:

nr =
4√
3

sin
[π

6
+
γ

3

]
sin
[γ

3

]
nt− = 2− 4√

3
cos

[
1

6
(π + 2γ)

]
+ 4 cos

[
1

6
(π + 4γ)

]
ns+ =

1√
3

(
4 cos

[
π + γ

3

]
− 2 cos

[
1

6
(π + 4γ)

])
ns0 = m2 =

2√
3

cos
γ

3
− 1.
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σmax

Expression for the line of maximum entropy in terms of γ:

σmax line(γ) =

= cos

[
1

6
(π + 4γ)

](
log(432) + 2 log

(
tan
[

1
12 (π − 2γ)

]
tan[γ] tan

[
1
12 (π + 2γ)

])
√

3
+

+ log

(
tan
[π

4
+
γ

6

]
tan

[
1

12
(π + 2γ)

])
sec

[
π + γ

3

])
−

− 2√
3

cos

[
π + γ

3

](
log

(
tan
[π

4
+
γ

6

]
tan

[
1

12
(π + 2γ)

])
+

+2 log

(
tan

[
1

12
(π − 2γ)

]
tan

[
1

12
(π + 2γ)

])(
sin

[
π + γ

3

]
− 1

))
−

log
(

tan
[π

6
+
γ

3

]
tan
[γ

3

])
, where γ ∈

(
0,
π

2

)
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Conclusion

I We solved the model on a two-dimensional surface, where the
densities and all other quantities are parametrised in terms of
u and µ.

I We computed an explicit expression for the line of maximum
entropy, which is also the line of maximum symmetry.

I Further directions: solving for general U and V ; the extension
of these methods to other integrable tiling models: octagonal
and decagonal triangle-rectangle tiling models; possible
connections to combinatorics.
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