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Outline

Critical dense poymers is exactly solvable

on finite strips for lattice implementations

of all (r, s) conformal boundary conditions!

• Lattice model LM(1,2)

• Double-row transfer matrices and Yang-Baxter integrability

• Boundary Yang-Baxter Equation (BYBE)

• Link states

• r-type boundary operators

• Inversion identities

• Finite-size corrections

• Selection rules

• q-Catalan polynomials

• Conformal data and infinitely extended Kac table
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Logarithmic Minimal Models LM(p, p′)

• Logarithmic Minimal Models: Yang-Baxter integrable loop models on the square lattice.

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

X(u) = u = sin(λ − u) + sinu = sin(λ − u) I + sinu ej

1 ≤ p < p′ coprime integers, λ =
(p′ − p)π

p′
= crossing parameter

u = spectral parameter, β = 2cosλ = nonlocal loop fugacity

• Critical Dense Polymers LM(1,2): (p, p′) = (1,2), λ =
π

2

β = 0 ⇒ no loops ⇒ space filling dense polymer
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Yang-Baxter Integrability

Yang-Baxter Equation

u

v

u − v =
v

u

u − v

Double-row transfer matrices in (r, s) = (1,1) sector

D(u) =
1

sin 2u
u u

λ−u λ−u

. . . . . .

. . . . . .

YBE + BYBE ⇒ D(u)D(v) = D(v)D(u)

• Multiplication is vertical concatenation of diagrams.

• Equality is the equality of N-tangles.

• Act on link states to obtain a matrix representation.
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Boundary Yang-Baxter Equation

• The Boundary Yang-Baxter Equation (BYBE) is the equality of boundary 2-tangles

u−v

λ−u−v

u

v

=

u−v

λ−u−v

v

u

• For r, s = 1,2,3, . . ., the (r, s) BYBE solution is built as the fusion product of (r,1) and (1, s)

integrable seams acting on the vacuum (1,1) triangle:

K(ρ,s)(u) = =

=(r,s) (r,1) ⊗

u−ξρ−1 u−ξρ−2 u−ξ1

−u−ξρ−2−u−ξρ−3 −u−ξ0

u

(1,s) (1,1)⊗

. .

. .

︸ ︷︷ ︸

ρ − 1 columns
︸ ︷︷ ︸

s − 1 columns

• The s-type seam introduces s − 1 defects.

• The r-type seams are realized with r = ⌈ρ
2⌉, that is, either ρ = 2r − 1 or ρ = 2r.

• The column inhomogeneities are: ξk = (k + 1
2)λ
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Link States

• For (r, s) boundary conditions, D(u) acts on a vector space of link states V
(N)
ρ,s restricted so

that there are no half-arcs closing in the ρ − 1 columns of the r-type seam and no half-arcs

closing in the s − 1 columns of the s-type seam. Half-arcs are allowed to close between the r-

and s-type seams.

• The dimension of V
(N)
ρ,s with N + ρ + s − 2 nodes is

dimV
(N)
ρ,s =

(
N

N−ρ+s
2

)

−

(
N

N−ρ−s
2

)

=







(
N

N−2r+s
2

)

−

(
N

N−2r−s
2

)

, ρ = 2r

(
N

N−2r+s+1
2

)

−

(
N

N−2r−s+1
2

)

, ρ = 2r − 1

These are generalized Catalan numbers.

• The six link states for V
(N)
3,3 with N = 4 are
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r-Type Boundary Operators

• The face operators are Xj(u) = s(λ − u)I + s(u)ej, s(u) =
sinu

sinλ
, β = 2cosλ

• The r-type boundary operators K
(ρ)
0 (u, ξ) are solutions to the BYBE constructed as

K
(ρ)
0 (u, ξ) =

1

η(ρ)(u, ξ)

ρ−2
∏

j=0

Xj(u − (ρ−j−1)λ − ξ)
0∏

j=ρ−2

Xj(u + (ρ−j−1)λ + ξ)

= I +
s(2u)

s(u + ξ)s
(

u − ρλ − ξ
)

ρ−2
∑

k=0

(−1)ks
(

(ρ−k−1)λ
)

e
(k)
0

where η(ρ)(u, ξ) is a normalization. The proof of this identity is by induction.

• K
(ρ)
0 (u, ξ) is restricted to act from the space of link states with no closed half-arcs in the ρ−1

right-most columns onto itself. A basis in this algebra is

basis = {I, e
(k)
0 }, e

(k)
0 = e0e1 · · · ek−1ek =

k∏

j=0

ej = ordered products

• If Uρ(
β
2) are Chebyshev polynomials of order ρ, the generalized TL projectors are

P
(ρ)
j =

ρ−2
∑

k=0

(−1)ks
(

(ρ−k−1)λ
)

e
(k)
j =

ρ−2
∑

k=0

(−1)kUρ−k−2(
β
2) e

(k)
j , P

(ρ)
j P

(ρ′)
j = Uρ−1(

β
2)P

(ρ′)
j

P
(2)
j = ej, P

(3)
j = βej−ejej+1, P

(4)
j = (β2−1)ej−βejej+1+ejej+1ej+2

0-7



Inversion Identities

• In all (r, s) sectors, the eigenvalues d(u) of the normalized double-row transfer matrices

d(u) =







2ρ−1D(u)

sin 2u cosρ−2 2u
, ρ = 2r

2ρ−1D(u)

sin 2u cosρ−1 2u
, ρ = 2r − 1

satisfy the universal inversion identities (Baxter 1982, OPW 1996, PR 2007)

d(u)d(u + λ) =







(

cos2Nu + sin2Nu
)2

, ρ = 2r

(

cos2Nu − sin2Nu

cos2u − sin2u

)2

, ρ = 2r − 1

subject to the initial condition and crossing symmetry

d(0) = 1, d(λ − u) = d(u)

• The inversion identities are proved directly in the planar algebra. The solutions take the form

d(u) =







⌊N−1
2 ⌋
∏

j=1

(

1 + ǫj sinjπ
N sin 2u

)(

1 + µj sinjπ
N sin 2u

)

, s odd

⌊N
2 ⌋
∏

j=1

(

1 + ǫj sin(2j−1)π
2N sin 2u

)(

1 + µj sin(2j−1)π
2N sin 2u

)

, s even

where ǫ2j = µ2
j = 1 for all j. Note that double zeros occur if ǫj = µj.
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Finite-Size Corrections

• The partition function for a P × N strip is

ZP,N = Tr d(u)P =
∑

n
dn(u)P =

∑

n
e−PEn(u)

En(u) = − ln dn(u) = 2Nfbulk(u) + fbdy(u) +
2π sin 2u

N

(

−
c

24
+ ∆r,s + k

)

+ · · ·

where fbulk(u) and fbdy(u) are the bulk and boundary free energies and k = 0,1,2 . . ..

• Euler-Maclaurin gives the central charge c = −2 and the (r, s) finite excitations

−
c

24
+ ∆r,s + k =







− c
24 +

∑

j∈En

j +
∑

j∈Mn

j, s odd

− c
24 − 1

8 +
∑

j∈En

(j − 1
2) +

∑

j∈Mn

(j − 1
2), s even

• The sets
En = {j : ǫj = −1}, Mn = {j : µj = −1}

encode the location of excited zeros in the analyticity strip in the complex u-plane

uj =
π

4
±

i

2
ln tan

πEj

2N
, Ej =







j, s odd

j − 1
2 s even

These selection rules are determined empirically based on physical combinatorics.

• The lowest excitation (k = 0) in each sector gives

∆r,s =
(2r − s)2 − 1

8
, r, s = 1,2,3, . . .
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Selection Rules

• For (r, s) boundary conditions, with N columns and ρ + s − 2 boundary columns, the

combinatorial selection rules single out the following finitized partition functions

s odd : Z
(N)
(1,1)|(r,s)

(q) =







q−
c
24

s∑

k=1

CN−1
2 ,ρ−s−1+2k

2

(q), ρ = 2r

q−
c
24

s∑

k=1

[

CN−2
2 ,ρ−s+2k

2

(q) + q
N
2 CN−2

2 ,ρ−s−2+2k
2

(q)
]

, ρ = 2r−1

s even : Z
(N)
(1,1)|(r,s)

(q) =







q−
c
24−

1
8

s/2
∑

k=1

C′
N
2 ,ρ−s−2+4k

2

(q), ρ = 2r

q−
c
24−

1
8

s/2
∑

k=1

[

C′
N−1

2 ,ρ−s−1+4k
2

(q) + q
N
2 C′

N−1
2 ,ρ−s−3+4k

2

(q)
]

, ρ = 2r−1

where CM,r(q) and C′
M,r(q) are q-Catalan polynomials and the modular nome is

q = e−2πτ , τ = P
N sin 2u, P

N = aspect ratio

• Simplifying, using combinatorial q-identities, gives Kac characters

Z
(N)
(1,1)|(r,s)

(q) = χ(N)
r,s (q) =







q−
c
24+∆r,s

([
N

N−2r+s
2

]

q
− qrs

[
N

N−2r−s
2

]

q

)

, ρ = 2r

q−
c
24+∆r,s

([
N

N−2r+s+1
2

]

q
− qrs

[
N

N−2r−s+1
2

]

q

)

, ρ = 2r − 1

→ χr,s(q) = q−c/24 q∆r,s(1 − qrs)
∏∞

n=1(1 − qn)
, N → ∞

0-10



q-Catalan Polynomials

• The q-Catalan polynomials are the spectrum generating functions of the building blocks for

the finitized characters in the (r, s) sectors. They are finitized characters for the irreducible

representations.

• Explicitly, in terms of q-binomials, the q-Catalan polynomials are

CM,r(q) = q
r(r−1)

2
(1 − qr)

(1 − qM+1)

[
2M + 2

M + 1 − r

]

q

C′
M,r(q) = q

(r−1)2

2
(1 − q2r)

(1 − qM+r+1)

[
2M + 1

M + 1 − r

]

q

• The q-Catalan polynomials admit a combinatorial interpretation in terms of the patterns of

zeros. For M = 2, r − 1 = 1 this combinatorial interpretation is illustrated by

q

q1/2
C2,2(q) =

C′
2,2(q) =

+ + +

+ + +

q2

q3/2

q4

q5/2

q5

q7/2

E1 = 1, 1
2

E2 = 2, 3
2

The sum CM,r(q) =
∑

S qE(S) is over all admissible double-column configurations S of height M

with r − 1 more occupied sites in the right column.
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Conformal Data and Kac Table

• Central charge: (p, p′) = (1,2)

c = 1 −
6(p − p′)2

pp′
= −2

• Infinitely extended Kac table

of conformal weights:

∆r,s =
(p′r − ps)2 − (p − p′)2

4pp′

=
(2r − s)2 − 1

8
, r, s = 1,2,3, . . .

• Kac characters:

χr,s(q) = q−c/24 q∆r,s(1 − qrs)
∏∞

n=1(1 − qn)

q = exp(−2πτ) = modular parameter

τ = P
N sin 2u = geometric factor

... ... ... ... ... ... . . .

63
8

35
8

15
8

3
8

−1
8

3
8

· · ·

6 3 1 0 0 1 · · ·

35
8

15
8

3
8

−1
8

3
8

15
8

· · ·

3 1 0 0 1 3 · · ·

15
8

3
8

−1
8

3
8

15
8

35
8

· · ·

1 0 0 1 3 6 · · ·

3
8

−1
8

3
8

15
8

35
8

63
8

· · ·

0 0 1 3 6 10 · · ·

−1
8

3
8

15
8

35
8

63
8

99
8

· · ·

0 1 3 6 10 15 · · ·

1 2 3 4 5 6 r

1

2

3

4

5

6

7

8

9

10

s
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Summary

• A Yang-Baxter integrable model of critical dense polymers is solved exactly on finite-width

strips.

• Fixing ρ even or odd, we have constructed an infinite family of integrable boundary conditions

labelled by r, s = 1,2,3, . . . which are conjugate to scaling fields in the infinitely extended Virasoro

Kac table.

• A study of the physical combinatorics of eigenstates, via the eigenvalue patterns of zeros in

the complex u-plane, yields finitized characters involving q-Catalan polynomials.

• Solution of the inversion identity allows the finite-size conformal properties to be obtained

exactly by Euler-Maclaurin yielding the central charge, conformal weights and characters of a

logarithmic CFT with spectrum

c = −2, ∆r,s =
(2r − s)2 − 1

8
, r, s = 1,2,3, . . .

• The conformal dimensions agree with the values obtained from off-critical order parameters

(Seaton’s talk).
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