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Abstract

We present a method of determining a Lax representation for similarity
reductions of autonomous and non-autonomous partial difference
equations. We present reductions of one of the simplest integrable
lattice equations, the lattice potential Korteweg-de Vries equation,
which will give rise to a simple Quispel-Roberts-Thompson map, a
discrete version of the first Painlevé equation and a discrete version of
the fourth Painlevé equation, and their Lax pairs.
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We consider lattice equations of the form
Q(W/,ms Wit1,ms Wi m+1, Wi1,m+1; @, Bm) =0 (1)

where @ is multilinear and multidimensionally consistent and «; and 3,
are functions of / and m respectively. Given a staircase of initial values,
one evolves the system by imposing (1) on each square in Z2.
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We consider lattice equations of the form
Q(W/,ms Wit1,ms Wi m+1, Wi1,m+1; @, Bm) =0 (1)

where @ is multilinear and multidimensionally consistent and «; and 3,
are functions of / and m respectively. Given a staircase of initial values,
one evolves the system by imposing (1) on each square in Z2.

With this initial data, we may find w , for all (/,m) € Z2.
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We call a system of linear equations,
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We call a system of linear equations,

llJl—i—l,m = Ll,mwl,m
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We call a system of linear equations,

llJl—l—l,m = Ll,mwl,m

\Ul,m—i-l = Ml,mwl,m
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We call a system of linear equations,

llJ/—i—l,m = L/,mwhm

Vim1 =M nVim

is called a Lax pair if the consistency
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We call a system of linear equations,

llJ/—i—l,m = L/,mwl,m

\Ul,m—i-l = M/,mwl,m

|

is called a Lax pair if the consistency

\Ul+1,m+1 = Ml—i-l,le,me,m

Vittmir = LimeMimVim
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is called a Lax pair if the consistency
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We call a system of linear equations,

llJ/—i—l,m = L/,mwl,m

\Ul,m—i-l = M/,mwl,m

|

is called a Lax pair if the consistency

\Ul+1,m+1 = MI+1,le7me,m
— MI—H,mLI,m = Ll,m+1MI,m

Vittmir = LimeMimVim
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We call a system of linear equations,

llJ/—i—l,m = Ll,mwl,m

\Ul,m—i-l = M/,mwl,m

is called a Lax pair if the consistency

\Ul+1,m+1 = MI+1,mLI7me,m
— MI—H,mLI,m = Ll,m+1MI,m

Vittmir = LimeMimVim

Implies our given lattice equation
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We call a system of linear equations,

Vicim=LimVim

\Ul,m—i—l = Mhm“’l,m

|

is called a Lax pair if the consistency

Victmet = MiyimblimVim
— MI+1,mLI,m = Ll,m+1MI,m

wl—l—l,m—i—l — Ll,m+1 Ml,mwhm

Implies our given lattice equation

Q(WI,m, Wit1,ms Wi, m+15 Wi1,m+1; &, Bm) = 0
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Our toy example for this talk will be lattice KdV

(Wim — Wit 1,m41) (Wit 1,m — Wims1) = oy — Bm

which has the Lax pair

w, Q) — Y — W mW,

lem: ( ;jm =7 I, mWi4+1,m )’ (2)
—Wir1,m

Ml,m < ngm Bm— v — Wi mWi m+1 ) . (3)
—Wim+1

Equating L mi1 M) m with M1 mL) m gives us the above.

Christopher M. Ormerod in collaboration witHLax representations of reductions of nonauto 4-th of December, 2012 5/19



Travelling Wave Reductions

Let us consider a travelling wave
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Travelling Wave Reductions

If we examine two different states, say m = 10 and m = 15, we see

m=10 m=15
6%5;;;g/§ﬂo 615%22;;55%
the solution satisfies a similarity constraint, in this case

Wi12.m+5 = Wi m,

so that after some time (in m), the wave has just translated in space.
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Travelling Wave Reductions

If we examine two different states, say m = 10 and m = 15, we see
m=10 m=15
the solution satisfies a similarity constraint, in this case

W42, m+5 = Wim,

so that after some time (in m), the wave has just translated in space. In
general, we will consider reductions of the form

Wit zi,m+z, = Wim-

which we call a (z;, z2)-reduction.
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If we take a simplest case of,

(Wl,m - W/—i—l,m-l—l)(WH—l,m - W/,m+1) = o) — /Bm

where oy = o = const and (,, = 8 = const, then impose a
(2, 1)-reduction, then we obtain a mapping from the

We start by tracing a path going through points sharing the same value.

Christopher M. Ormerod in collaboration witHLax representations of reductions of nonauto 4-th of December, 2012 7 /19



If we take a simplest case of,

(Wi,m — Wit 1,me1) (Wit 1,m — Wims1) = o) — Bm

where oy = o = const and (,, = 8 = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

w2 Wi

w2 Wi Wo

Wo Wi Wo

w2 wWo

We label the points on the path.
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If we take a simplest case of,
(Wim — Wit 1,m+1) (Wit 1,m — Wi ms1) = oy — Bm

where aj = a = const and 3,, = § = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

w2

wy (W2 Wi

wy (W2 Wi Wo

wy W2 W1 Wo

w2 Wo

We use the equation on the lattice to define our new point

a—p
wo — wy

WQZWo—i-
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If we take a simplest case of,

(Wi,m — Wit 1,me1) (Wit 1,m — Wims1) = o) — Bm

where oy = o = const and (,, = 8 = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

w2

W2

W2

w1

w2

w2

w1

wyp (W2

w1

w2

So we may remove values we don't need anymore.
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If we take a simplest case of,

(Wim — Wit 1,m+1) (Wit 1,m — Wims1) = oy — Bm

where ay = a = const and 3,, = 8 = const, then impose a
(2, 1)-reduction, then we obtain a mapping from the

w2

Wy W2 Wi

wy W2 Wi

wo W2 Wi

w2

We now have a new set of initial conditions that is the same as our last,
but shifted in the (1,1).
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If we take a simplest case of,

(Wim — Wit 1,m+1) (Wit 1,m — Wi ms1) = oy — Bm

where oy = a = const and (,,, = 8 = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

W2
wa w1 Wo
Wo W1 Wp
w2 w1 Wo
W2
Hence, we have formed a map
W Wo = wp +
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If we take a simplest case of,

(Wim — Wit 1,m+1) (Wit 1,m — Wi ms1) = oy — Bm

where oy = a = const and [, = 8 = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

w2

Wy W1 Wp

w2 w1 Wo

w2 Wi Wo

w2

If we allow n=2m — /, then this is in the general form

a—p

Wn+4+2 — Wpt1

Wny3 — Wp =
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If we take a simplest case of,

(Wl,m - Wl+1,m+1)(Wl+1,m -

Wim+1) = & — Bm

where oy = a = const and (,,, = 8 = const, then impose a
(2,1)-reduction, then we obtain a mapping from the

w2

W2

w1

wo

W2

w1

wo

w2

w1

wo

w2

If we let yp, = Wpt1 — Wy, this becomes

Ynt1+ Yn+ Yn-1=

Yn

a—p

which is a mapping of Quispel-Roberts-Thompson type,

Christopher M. Ormerod in collaboration witH.ax representations of reductions of nonautol

4-th of December, 2012

7/19



We wish to form a Lax pair for this system

Whn-+2 Wn+1

Wn+2  Wnt1 Whn

Whn+2 Whn
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Wn+2 Wn+1
Wh-+2

Wn+1

Whn
Wn+2

Whn
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Ya(7) = An(7) Ya(v)




We wish to form a Lax pair for this system

Whn-+2

Wn+1

Wh-+2

n+1

Wn+2
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Ya(7) = An(7) Ya(v)

Yor1(7) = Ba(7) Ya(7)

4-th of December, 2012

8/19



We wish to form a Lax pair for this system

Ya(7) = An(7) Ya(v)

Yo+1(7) = Ba(7) Ya(7)

n+2  Wh+1

v

An(7) = Mizo,mbLiy1,mblim

Whn+2 n+1 Whn

Whn+2 Whn
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We wish to form a Lax pair for this system

Ya(7) = An(7) Ya(v)

F'S Yot1(7) = Ba(7) Ya(7)

Wn+2  Wn+1

An(7) = Mizo,mbLiy1,mblim

Whn+2 n+1 Whn

Bn(v) = Mix1,mLim

Whn+2 Whn
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We wish to form a Lax pair for this system

n+2

Wn+1

Wh-+2

n+1

Wn+2

Whn

Yo () = An(7) Ya(7)
Yo+1(7) = Ba(7) Ya(7)
An('y) = MI+2,le+1,le,m

Bn(’)/) = Ml—l—l,le,m

Where by = we mean under the variables of the reduction:
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We wish to form a Lax pair for this system

Yo+1(7) = Ba(7) Ya(7)

n+2  Wh+1

An('y) = MI+2,le+1,le,m

Whn+2 n+1 Whn

Bn(’)/) = Ml—l—l,le,m

Whn+2 Whn

Where by = we mean under the variables of the reduction:

A — Whn B — Y — WnpWhp42 Why1 Q@ — 7% — WpWpit
n 1 —Wni2 1 —w,

Wnt2 O =7 — Wnpi1Wni2
1 —Wp+t1
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We wish to form a Lax pair for this system

Ya(v) = An(7) Ya(7)

Yor1(7) = Ba(7) Ya(7)

Wn+2  Wnt1

An(fY) = MI+2,m LI+1,le,m

Wn+2 Wn+1 Wn

Bn(’}/) = MI+1,mLI7m

Whn+2 Whp

Where by = we mean under the variables of the reduction:
A — w, B— Y — WnWpnpi2 Why1 O — 7 — WpWpia
n 1 —Wpi2 1 — W,

Wn+2 O — 7% — Wpt1Wny2
1 —Wh+1

B — Wil B =79 — Wnr1Wni3 Whnt2 Q& =7 — Wpt1Wni2
=
1 —Wn+3

1 —Wp+t1
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The consistency relation for these two equations is equivalent to

Wn+2  Wnt1

Wn+2 Wn+1 Wn

Whn+2 Whp

Where by = we mean under the variables of the reduction:

A _<Wn 5_7_ann+2>(wn+1 a_’Y_WanJrl)
n=

1 —Wng2 1 —Wh
Wn+2 O — 7% — Wpt1Wny2
1 —Wht1

B — Wil B =79 — Wnr1Wni3 Whnt2 O — 7% — Wpy1Wni2
=
1 —Wn+3

1 —Wp+t1
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The consistency relation for these two equations is equivalent to

Yn+1 = An+1 Bn Yn

Yn+1 = BnAn Yn

Wn+2  Wnt1

An+1 Bn = BnAn

Wn+2 Wn+1 Wn

Whn+2 Whp

Where by = we mean under the variables of the reduction:
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The consistency relation for these two equations is equivalent to

Yn+1 = An+1 Bn Yn

Yn+1 = BnAn Yn

Wn+2  Wnt1

An+1 Bn = BnAn

Wn+2 Wn+1 Wn

a—p3

Wn+2—Wn+1

W, — Wp =
Whn+2 Whp n+3 n

Note: We could express this in terms of the y, (with some effort).

A _<Wn 5_7_Wan+2>(Wn+1 a_’Y_WanJrl)
n=

1 —Wpg2 1 —Wh
Wnt2 O — 7% — Wpt1Wny2
1 —Wht1

B — Wil B =79 — Wnr1Wni3 Whnt2 O — 7% — Wpy1Wni2
=
1 —Wn+3

1 —Wp+t1
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Deautonomizing the theory

If we impose
W/+21,m+22 = W/,ma

we find a constraint that the equation describing the evolution at (/, m)

must be the same as the equation at (/ + z1, m + z2). In our toy example,
imposing the above gives

(Wim — Wit 1,m+1) (Wi1,m — Wims1) — oy + Bm = 0,
(Wim — Wit 1, m+1) (Wit 1,m — Wim41) — Qgz + Bmiyz = 0.
is consistent when
Atz — Q) = PBmtz, — Bm = lem(z1, 22)h

where h is constant in / and m by a seperation of variables argument.
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In our example, the (2, 1)-reduction, we have
a2 — = Bmi1 — Bm = 2h
The simplest solution is where these are just linear;
a;=Ih+ a, Bm = mh+ b.

Our reduction is then (remembering n =2m — /)

Wois — Wy = a1 —Bm a—b—hn+h
n+3 — Wn — -
Wni2 — Wpit Wni2 — Wptt

which by letting y, = w,+1 — w,, we obtain the equation

nh+b—a
Ynt1t+Ynt Y1 = ——)
Yn

which is a discrete version of Painlevé I.
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To form the Lax representation here, we find in the original Lax pair, the
parameters, «; and Bp,, always appear with ~,

Wim & =79 = WimWi+1m
L — ) ) ) , 4
= (" et ) *)
My = ( Wim Bm =Y — Wi,mW,m+1 > ‘ (5)
—Wim+1

The key part is that we introduce a spectral parameter that couples a
direction in (/, m)-space with -y, we let

x = Ilh—~.
now the Lax pairs can be written in terms of x and n, as

ap—y=a+hl—v
——
X
/Bm—”y:b—FBm—Oé/—i-h/—"y.
N—— =

nh X
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We wish to form a Lax pair for this system

Whn-+2 Wn+1

Wn+2  Wnt1 Whn

Whn+2 Whn
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We wish to form a Lax pair for this system

n+2

Wn+1

Wh-+2

n+1

Wn+2
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Yn(x + 2h) = Ap(x) Ya(x)
Yot1(x + h) = Ba(x) Ya(x)
An(x) = MizomLizimlim

BH(X) = Ml+l,m Ll,m
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We wish to form a Lax pair for this system

Yn(x 4+ 2h) = Ap(x) Ya(x)

Yot1(x + h) = Ba(x) Ya(x)

n+2  Wh+1

An(x) = MizomLizimlim

Whn+2 n+1 Whn

BH(X) = Ml+l,m Ll,m

Whn+2 Whn

Where we need to now take into account the non-autonomy:

A _<Wn b+nh‘|‘X_Wan+2>(Wn+1 X+a+h_Wan+1>
o=

1 —Wpi2 1 —Whn
< Whpyo @+ X — WppiWpyo
1 —Wp+t1
B, = ( Wnt1 b+ nh+x — Wpiiwpgs ) ( Whio a+ X — WpiiWpyio )
1 —Wpy3 1 —Wn+1
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The compatibility relation for these two equations is equivalent to

Yos1(x + 3h) = Appa(x + h)Ba(x) Yo

Ynt1(x + 3h) = Bp(x + 2h)Ap(x) Ya(x

n+2  Wntl
Wni2 Wpl | Wi Ant1(x + h)Bn(x) = Bn(x + 2h)An(x)
s = = 3202

Whn+2 Whn

Where we need to now take into account the non-autonomy:

A _<Wn b+nh+X_Wan+2><Wn+l X+a+h_Wan+1>
o=
Wpn

1 —Wp42 1 —
< Whpyo @+ X — WppiWpyo
1 —Wnp+1
B, = < Wnt1 b4+ nh+x— wppiwpyes > ( Whio a+ X — WppiWpyio )
1 —Wpy3 1 —Wn+t1
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If we examine our original condition,
a2 — = Bmi1 — Bm = 2h,

a little more closely, we find that we may build an extra variable. The
general solution is

| hl+ a1 where [ is odd,
R Ry a> where | is even,

and 8, = 2mh + b, but since the resulting equation only depends on
a; — Bm, b can be chosen to be 0.

The single shift, n — n+ 1 has the effect

n+2 Wnt1 (Wn - Wn+3)(Wn+1 - Wn+2) = hn + 32

ay — a»+ h, a — a1 — h.

n+2 n+1 Whn

But the double shift has the desirable effect

Wn+2 Wn
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If we examine our original condition,

Q42 — ) = Bmy1 — Bm = 2h,

a little more closely, we find that we may build an extra variable. The
general solution is

|

and B, = 2mh + b, but since the resulting equation only depends on
oy — Bm, b can be chosen to be 0.

Wn+2

Wn+1

n+2

Wn+1

Whn

Wn+-2

Wn

hl + a1 where [ is odd,
hl + a> where [ is even,

The single shift, n — n+ 1 has the effect
(Wn — Wn+3)(Wn+1 — W,-H_Q) = hn+ dan.
alaangh, 32—)31*/1.

But the double shift has the desirable effect
that it does not permute the a;'s.
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If we examine our original condition,
42 — ) = Bmy1 — Bm = 2h,

a little more closely, we find that we may build an extra variable. The
general solution is

| hl+ a1 where [ is odd,
= R+ a> where | is even,

and B, = 2mh + b, but since the resulting equation only depends on
oy — Bm, b can be chosen to be 0.

The single shift, n — n+ 1 has the effect

1T Wn+2 Wntl (Wn - Wn+3)(Wn+1 - Wn+2) = hn + 32

alaangh, 32—)31*/1.

n+2  Wni1 Wn

But the double shift has the desirable effect
that it does not permute the a;'s.
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The double shift is then given by the coupled equations

(Wn - Wn+3)(Wn+1 - Wn+2) = hn + az,

(Wn+1 - Wn+4)(Wn+2 - Wn+3) = hn+ a1,
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The double shift is then given by the coupled equations

(Wn - Wn+3)(Wn+1 - Wn+2) = hn + az,

(Wn+1 - Wn+4)(Wn+2 - Wn+3) = hn+ a1,

However, if we let

Yo = (Wng2 — Wn)(Wni2 — Way1) — a2,
(Wny2 — wn)(yn + a1)

Zn —
5 Yo + nh ’

Christopher M. Ormerod in collaboration witHLax representations of reductions of nonautol 4-th of December, 2012 14 /19



The double shift is then given by the coupled equations

(Wn - Wn+3)(Wn+1 - Wn+2) = hn+ ap,
(Wn+1 - Wn+4)(Wn—|—2 - Wn+3) = hn+ ay,

However, if we let

Yn = (Wn+2 - Wn)(Wn+2 - Wn+1) — az,

S = (Wng2 — wn)(yn + a1)
n Vot nh ;

then the system is equivalent to

Z,% — (a1 + a2),

(Ynt2 + a1)(Yny2 + a2)
(Ynt2 + (n+2)h)

Yn + Yny2

ZnZp42 = —
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The double shift is then given by the coupled equations

(Wn - Wn+3)(Wn+1 - Wn+2) = hn + a,

(Wnt1 — Wpta)(Wnt2 — wpg3) = hn + ag,

However, if we let

Yn = (Wn+2 - Wn)(Wn+2 - Wn+1) — az,
- (Wn+2 — Wn)(yn + a1)
" Yn+ nh

9

then the system is equivalent to

(y +a1)’(y + a2)?
(v + nh)?

(y+y+a+a)y+tyt+ar+a)=

where yp =y, Yny2 =V, Yn—2 = y and n = n+ 2. This is a discrete

version of the fourth Painlevé equation.
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The Lax pair in the y, and z, variables are given by

Ya(x + 2h) = An(x) Ya(x),
Yir2(x) = Ba(x) Ya(x),

where
_ _(yn + al)(Yn + 32) X2 x4 e
An(X) = Zn R
X = VYn (yn+nh)zn
where
§ =yn+ a1+ a2+ hn,
€ =(yn + hn)(yn + a1) + (hn + y, + a1)az,
and

—z, x4+ hn+ z2
Bn(X) :< 1 —z n)'
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We have also performed a reduction from the lattice modified Korteweg-de
Vries equation

aI(W/,mWH—l,m —Wim+1 W/+1,m+1) - Bm(Wl,le,m—i-l - W/+1,le+1,m+1) =0
to a g-analogue of the sixth Painlevé equation

q2 (q2b1t2 + 232) (b2t2 + za1)
(zb1q2 + 32) (31 + Zb2) ’

(2b1g* + ya1) (t2b2g* + §a)
q* (a1 +yb1) (a2 +yb2)

yy

N
N>
I

where T = g°t for some fixed g € C and the a; and b; are fixed parameters.
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A reduction from the lattice Schwarzian Korteweg-de Vries equation

1 1
(o7} ( + (6)
Wim+1 — Wi+1,m+1 Wit1,m — Wim

1 1
= ﬂm 9
Wit1,m+1 — Wi+1,m Wiim — Wim+1

to a g-analogue of the sixth Painlevé equation

B biby(z —1) (q°z — 1) )
_q2 (blbgt — (912) (blbzt — 922)7
(brg?ty — 1) (bag?ty — 1)

g% (a1y — 1) (a2y — 1)

<>

y

N
N>

Il
—
[o0]
~

)

where t = gt for some fixed g € C and the a;, bj and 0; are fixed
parameters.
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Another reduction from the lattice Schwarzian Korteweg-de Vries equation

1 1
Qy < + (9)
Wim+1 — Wit1,m+1 Wit1i,m — Wim

1 1
= /Bm + )
WI—|—1,m+1 - Wl+1,m Wl,m - WI,m—&—l

to an equation just above the previous equation, known as q-P(E6(1)):

(a1 — 1) (2§ — 1) (239 — 1) (aay — 1)
(b1g*ty — 1) (b2g*ty — 1) ’
01(z—a1)(z—a2)(z— a3) (z — as)

(blbgtz + 91) (31328334 + 91q4tz)

(92 1) (92— 1) =

vz - 1) (72~ 1) =

I

where t = g*t, the a;, b; and 6; are fixed parameters and g € C.
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