Quantum Groups and Quanfum Cohomology

joint work with Davesh Maulik



Let X be a smooth algebraic variety, say defined by
homogeneous polynomial egquations

F_)(x_o0,.,x_N) = o, )=1,..,k

in projective space P'N, or a set—theoretic difference
ot two such.

Quantum cohomology ot X is a deformation of its
ordinary cohomology that takes into account rational
curves in X, e.q. polynomials

x_i = x_i(t)

ot a paramefer t that solve F_j = 0, modulo reparametrization,



As a linear space with bilinear form, guantum cohomology
is The same as the ordinary cohomology with its
Poincar\'e torm

(o, p) = )0 F
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cup product,
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The only difference is the product. In the quantum
case, it involves counts of rational curves in X

(L% 8,7) = q. é@[/@m

detormation parameters

K rational curves meeting

Poincare dual cycles

The degree of a curve is the degree of the polynomials that
parametrize it, or more geometrically, its class in H_2(X)



Formally, matrix elements of the quantum product
belong to a (completion) of the group algebra ot
the homology group H_2(X,Z)
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represenfed by a holo curve

But in our case the series will converge 1o a
rational tunction ot q.



The symbol g "degree may also be tfreated as a function
on The torus

H2<X/@>/2m HQ(X/ZJ
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This is natural from the string theory viewpoint,



Basic properties ot the gquantum product: L

(1) ¥ is a deformation of the cup product

1
As g—>0 or \omega >> 0 only The contributions \U/ q/

from curves of degree 0 remain, These are
points = triple infersections., In other words
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(2) * is a commutative, associative (1) product
with identity 1 = unit cohomology class

The associativity of the quantum product is a simple,
yet remarkable and powerful property of the
guantum product,



Beyond these generalities, not much can be said about
guantum cohomology ot an abstract algebraic variety,

However, for special classes of algebraic varities, quantum
cohomology Turns out to have very strong ties o quantum
infegrable systems, and thus can be effectively described.,

In particular, quantum integrable systems played a key role
in the old work of Givental, Kim, and others on quantum
cohomology of homogeneous varieties,



In some sense, the connection with guantum intfegrable
systems is almost tautological,

For any commutative associative product with 1, the
operators of multiplication

A % ¢ End H'(X)

tfor a maximal commutative subalgebra and thus a guantum
infegrable system ot sorts,




I think people in the field have a pretty good idea
tor which X the corresponding quantum integrable
system will look like those tamiliar from quantum groups.

Nekrasov and Shatashvili conjectured such description of

guantum cohomology tor moduli spaces ot vacua in
certain SUSY gauge theories,

Bezrukavnikov et al, formulated what turned out to be
closely related conjectures tor the so—called equivariant
symplectic resolution,

Also, there was a similar conjecture by Feigin, Finkelberg,
Frenkel, and Rybnikov for Laumon spaces.,



Our joint work with Davesh Maulik is about

Nakajima quiver varieties

These are both Nekrasov—Shatashvili vacua and
equivariant symplectic resolutions, In tact, they form
the largest class of equivariant symplectic resolutions
known to date,

There are vere compelling geometric reasons to study
guantum cohomology ot Nakajima varieties (see below..)



One part of our work, namely

A geometric construction of R—matrices

applies very generally, to all symplectic resolutions
aV\O| bel{,OVlOI.

It is this part that I will try explain in this talk,



The other part is the actual connection

Baxter subalgebras in Yangians _ Operators ot
(Commuting fransfer matrices) guantum mult

I imagine in Australia There is no need to explain
the object on the left, but just in case.



It R satisfies the Yang—Baxter equation and g is symmetry then
the operators
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commute tor all values ot the spectral \_/ IV

parameter u and all auxilliary spaces U

The symmetry g of the R—matrices, which has fo be fixed
here, is identified with the quantum ¢ — a fundamental insight
ot Nekrasov and Shatashvili, Twist is yet again a regularization,



Atter this introduction, it may be a good idea
fo review the definition of Nakajima varieties,



Nakajima varieties M(v,W) are algebraic Hamiltonian reductions of

T°% Framed representations of a quiver @

with dimension vectors v and w by the action of GL(v) = \prod GL(v_i)
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For example, tor the quiver with one vertex and
one loop, the Nakajima variety is

M(r,n) = moduli of framed U(r)—instantons
on R*4 of charge n W

I
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or, rather, the partial compactification of the RHS that parametrizes
framed torsion—free sheaves of rank r on C"2

This is, obviously, an object of central importance in 4D gauge theories.

For the same quiver without the loop, one gets T %6r(n,r), the cotagent
bundle of the Grassmannian of n—planes in an r—space,



1t is natural and convenient to form disconnected Nakajima varieties

M) = L] Ao

This means summation over instanton charges for framed instantons

or subspace dimension tor Grassmannians,

In the work of Nakajima and Varagnolo a certain Yangian was shown
o act on the cohomology of M(w). This action will be recovered and

extended in our approach,

Connected components are the weight spaces tor ifs Cartan subalgebra,



As Yangian modules,

H (M (e 25) ) = HICULG) ) @ HA (ML)

which may be traced to the natural embedding
M(ﬁﬂ " M(WL) > M(wﬁ wz\

by direct sum of guiver representations.

For us, it is crucial here that the LHS is the fixed locus of a Hamiltonian
C #—action on the RHS, This C*¥ acts by changing the framing.

E.g. Tor framed instantons by constant gauge trasformations (in

which case LHS is formed by reducible connections).



For any algebraic Hamiltonian action of a forus A on a symplectic
variety, we define a *wrong way' map

X A X
St H(X) — HL (X))
fo the A—equivariant cohomology of X,

In this talk, let's make a simplifuing assumption that the
fixed=point set X"A is finite, Then Stab(p), where p is a fixed point,
is an A=—invariant middle=dimensional (in tact, Lagrangian)

subvariety of X,

1t depends on an additional discrete choice = a choice of a
chamber C in Lie algebra of A,



Let p be a fixed point of A and
let € be in the Lie algebra of A,

The tangent space at p splits info
stable and unstable directions with
respect fo & — those attracted and
repelled from p under the action of

exp(T%§)
as T—y—\infty,
These jump as & crosses hyperplanes

defined by the weights aof A in the
Tangent space at p.



Globally on X, these become the stable and
unstable leaves ot p = the closures of the
attracting/repelling manitolds of p.

These also jump as E\in Lie A crosses walls,

This gives a partial order on X*A, namely

/
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JusT like real leaves, the stable leaves are
typically guite singular at the other fixed
points p°'.

Example: (conormals to) Schubert varieties




By definition,

SHecds (f) = Loaf (p) + Z ", Leal(p”)
P<p

where the coefficients m_ip,p'} are uniguely detfermined by
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The idea is that while leaves are delicate and difficult
o control the stable envelopes are much more robust
and more suitable tor computations.

In tact, when the computations are set up properly,
one never has to think about leaves,



The leaves and, hence, the stable
envelopes jump as the Lie algebra C
parameter & crosses walls formed
by weights a ot A in the fangent

spaces at fixed points,

Lle

For every chamber C of the
complement of the walls, we get a canonical map

Stak, + HE(XH) — HE (X

where G is any group that commutes with A,

(A)



C It we cross a wall a, we get a map

-1
{OL = Stab_ < Stab,.

that acts in the cohomology of X"A and
depends rationally on the equivariant

paramefers,

The weight a is the spectral parameter for R_a



These R—matrices satisty natural
compatibilities that translate
intfo the Yang—Baxter equation
tor the case of
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Once there is a solution R of the Yang—Baxter equation,

we can define a Yangian action on the cohomology. This is
done FRT=style, as the algebra generated by the matrix
coefficients of R(u) in one of the tactors. By construction,
they act in the other tactor.

We show this is indeed a Yangian, that is, a Hopt algebra
deformation of U(git1) tor a certain Lie algebra g.
In general, g goes beyond Kac—Moody Lie algebras,



For gquivers of finite type, this is the same Yangian
as in The work of Nakajima and Varagnolo., In general,
it is larger,

For example, tor the case of instantons on R4, the

R—matrix is essentially the reflection operator in Liouville CFT,
Algebras closely related to the corresponding Yangian appeared

in The work of Cherednik, Miki, Vasserot—=Schiff mann, and many others.

This directly relates to many topics of current research,
in particular to the work ot Alday, Gaiotto, and Tachikawa,
and also many other people,



The Cartan subalgebra h of g acts by linear functions of v and w.

The subalgebra U(hi11) of U(g(t1) is detormed to the algebra of
cup products by the characteristic classes of the tautological bundles.,

1t also corresponds to the vacuum (that is, v=0) matrix elements of the
R—matrix and thus is the g—>o0 limit of the Baxter subalgebras

tru (%@DQU,\/(M

in The Yangian., The general g gives quantum products,
as predicted by [NS]



In particular, we prove the following tformula for the guantum product
by first Chern classes A of tautological bundles

A

/>\7ée = ,>\U+JV\Z ()\jo(>4j q(x QD(Q_D( +
where >0 | /\

scalar

\hbar - equivariant weight of the symplectic torm,
aranges over the roots of g, which form a subset of H_2(X%,2),
e_a and e_{—a} are dual bases of the corresponding root spaces,

and we have shiffed the origin in H*2(X) to get rid of many signs.



It proves roughly halt of what Bezrukavnikov et al conjectured.

Namely it equates the so—called quantum differential equation

AN

with the trigonometric Casimir connection for g
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Trigonometric Casimir connections tor the (Yangians of)
finite=dimensional semisimple Lie algebras g were defined

and studied by Toledano Laredo (building on the earlier
of .)

(x)
H*(X)

work



This is proven by geomeftrically defining and identifying the commuting
difference Quantum Knizhnik=Zamolodchikov connection on the space
ot equivariant parameters,

In other words, there is a flat differential=difference connection on

The whole eguivariant H*2_6(X), which includes both geometric and purely
equivariant directions, Cocharacters of 6 produce nontrivial X bundles over
P*1, The new operators count sections of these bundles, i.e. twisted
rational curves in X,

In the language of gquantum integrable system, the
commuting difference connection gives shift operators.



Now a few words aboul applications and extensions ..



Quantum cohomology ot Nakajima varieties is interesting,
in particular, because counting curves in Nakajima varieties
is related to questions in Donaldson—Thomas theory.,

DT theory is the analog of Donaldson theory in 3

complex (& real) dimensions, Instead of bundles and sheaves
on Kahler surfaces, it counts sheaves on algebraic 3—tolds,
(As well as stable objects in similar categories).,

It is directly related 1o many things in topological strings,
e.d. The GW-DT conjectures ot [MNOP1 equate it (after a
change of variables), To the A model on the same 3—fold.



Sheaves on hbrations like

surface S ¢ - z=Ffold

l
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are related to rational curves in the moduli of sheaves on S,

Thus quantum cohomology of Nakajima varieties provides what
may be called a Hamiltonian viewpoint on the DT theory.



Among other things, our results give a very

different proof of the old results of

[0—Pandharipandel and [(0Oblomkov—Maulik]

on gquantum cohomology ot Hilbert schemes of A_n sufaces
(on which GW-DT tor toric varieties rests),

as well ifs generalization for all ranks.

In some sense, general rank is easier than rank 1



The generalization of this o K=theory and beyond
is The subject of current research.

In K=theory, the picture is more complete and symmetric,
with the quantum connection and shitt operators playing
symmetric roles,

This symmetry is perhaps best explained tfrom the
viewpoint of M—=theory.



Such a close connection between quantum integrable
systems and the geometry ot extended objects

in extra dimensions brings many philosophical
guesTions, like ..



