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Invariants in vacuum modules
Define the invariant bilinear form on a simple Lie algebra g,
(X,Y) = — tr(ad Xad Y)
) =38 r(ad X a ,

where 4V is the dual Coxeter number.

For the classical types, (X,Y) = const-trXY,

n for g=sl,, const = 1

h = N-=-2 for g = op, const:%

n+1 for g=sp,,, const = 1.
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The affine Kac—Moody algebra g is the central extension
g=glt.r JeCK
with the commutation relations
(X[, Y[s]] = (X, Y][r+ ] + 70, (X, V) K,
where X[r] = Xt" forany X e gand r € Z.

The vacuum module at the critical level V(g) over g is the
quotient of the universal enveloping algebra U(g) by the left

ideal generated by g[7] and K + h".
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As a vector space, V(g) = U(r'g[r"!]) and
glt]-1=0, K-1=-h"
The Feigin—Frenkel center 3(g) is the algebra
3(g) = Endg V(g).
Its elements are g[r]-invariants of the vacuum module
3@ = V(e) = {v € V(g) | glt]v = 0}

Any element of 3(g) is called a Segal-Sugawara vector.
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Properties:

» The algebra 3(g) is commutative.
» It can be regarded as a subalgebra of U(r'g[t~']).

» The subalgebra ;(g) of U(r~'g[r~']) is invariant with
respect to the translation operator T defined as the

derivation T = —0,.
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Theorem (Feigin—Frenkel, 1992).
There exist Segal-Sugawara vectors Si,...,S, € U(t 'g[t™']),

n =rank g, such that

A~

3@ =C[Trs [ 1=1,...,n, k>0].

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.
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Proof for the classical types.
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements T%S; withi=1,....,nand k > 0 are

algebraically independent.

» Show that they generate 3(g) by taking the classical limit.
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Taking classical limit we get a g[f]-module structure on the
symmetric algebra S(:'g[r]):

adjoint action with subsequent quotient modulo g[z].

Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g). Then each element
Py =T P(Xi[—1],...,Xq[—1]), r>0,

isa g[f]-invariant in the symmetric algebra S(r~'g[r~1]).
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Theorem (Beilinson—Drinfeld, 1997). If Py,..., P, are
algebraically independent generators of S(g)?, then the
elements Py ;. .., Py, () With » > 0 are algebraically

independent generators of S(t—lg[t‘l])gm.

Example. Let g = sl, with the basis e,f,. Then P = h? + 4fe'is
the generator of S(sl,)*". The algebra of sl,[f]-invariants in

S(t~'sk[t~']) is generated by the elements P(,) with r > 0,

Pgy = h[—1]> + 4f[—1]e[~1],

Py = 2h[=1]h[=2] + 4f[-2]e[-1] + 4f[-1]e[-2], erc.
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Explicit generators of 3(g). Type A

Set Eylr] = Ejt" € gly[t, 17"

and

N
El[r] = Z ej ® Ey[r] € EndCY @ U(gly[t,17"]).
ij=1
Consider the algebra

EndC" ®...® EndC" ® U(glyl[t, t_l])

m

and let H™) and A(™ denote the symmetrizer and

anti-symmetrizer in Ve .. @CN.
N e’

m
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Theorem. All coefficients of the polynomials in 7 = —d/dt
A (7 + E[~1]1) ... (1T + E[~1]»)

= quOTm +¢m1 ,7_m—1 + e +¢mm7

wH" (7 4+ E[-1]1) ...(7 + E[~1],)

= meTm +wm1 Tm_l + e +wmma

tr (T + E[_l])m = Tm0 T + T 1 Tmil ot T

belong to the Feigin—Frenkel center 3(gly ).



Theorem. All coefficients of the polynomials in 7 = —d/dt
A (7 + E[~1]1) ... (1T + E[~1]»)

= gmeTm +¢m1 ,7_m—1 T+ +¢mm7

tI'H(m)(T —i—E[—l]]) (7' —|—E[—1]m)

= Qz[)mOTm_‘_17bm17—m_1 + e +wmma

tr(T+E[_1])m = 7TmOTm + Tm1 Tmil + o T

belong to the Feigin—Frenkel center 3(gly ).

[Chervov-Talalaev, 2006, Chervov—M., 2009].
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Types B, C and D
Let g=oy, spy with N=2n or N=2n+1.

Use the notation i’ =N—-i+1 and

Fij:Eij_Ej’i/ or F,'j:E,'j—EiEjEj/i/,

where ¢, = —¢,.;, =1 for i=1,...,n. Set
Fij[r] = Fijt" € glt,t 7]

and
N

Flr] =) e;j® Fij[r] € EndC" @ U(gt,r™"]).
ij=1
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Brauer algebra B,,(w)

Multiplication of m-diagrams (m = 8):

1 2 3 4 5 6 7 8

1 2 3 4 65 6 7 8

= W I
& 7 T v




For 1 < a < b < mdenote by s,, and ¢,, the diagrams

0= o N B

m



For 1 < a < b < mdenote by s,, and ¢,, the diagrams

The symmetrizer in the Brauer algebra B, (w)

is the idempotent s such that

sap s = s g, = g0m) and eap s = s eqp = 0.

m
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Inthe case g = oy set w = N. The generators of B5,(N) act

in the tensor space
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Action in tensors

Inthe case g = oy set w = N. The generators of B5,(N) act

in the tensor space

CVg...oCVN
—_—
m
by the rule
Sab'_>Pab; €ab'_>Qab; 1<a<b§m,
where

N
Oup = Z 1®(a=1) ® e ® 1®(b—a-1) ® eirjr @ 1®(m=b)
ij=1



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
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In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
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Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sab +r —Pap, €ab = —Qab, I1<a<b<m,
where

N
Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1

In both cases denote by S the image of the symmetrizer s(")

under the action in tensors,

$M c EndC’ ® ... ® EndCV .

m




Explicitly,

(m) _ * Pap B OQap
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Explicitly,

(m) _ * Pap B OQap
S -~ om! H (1+b—a N/2—|—b—a—1)’

and




Explicitly,

1 Py Oub
stm — L (142 - ).
m! 1<g<m Jrb—a N/24+b—a—1
and
S(m) _ i H (1 B Pab . Qab )
m! 1<a<b<m b—a n-bta+l
Set
()_w+m—2 N for g=on
Ame w+2m—2’ W=

—2n for g=sp,,.
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Theorem. All coefficients of the polynomial in 7 = —d/dt

o) S+ FE 1)) (- FE1))

:¢mOTm+¢mleil ++¢mm

belong to the Feigin—Frenkel center 3(g).



Theorem. All coefficients of the polynomial in 7 = —d/dt

V() e S (7 + F[=1]1) ... (7 + F[~1])
= ¢m07—m + ¢ml Tmil et ¢mm
belong to the Feigin—Frenkel center 3(g).

Moreover, in the case g = 0y,, the Pfaffian

PfF[—

1)o(2) [_1] - 'Fo(2nfl) a(2n)’[_1]'
0'662”

belongs to 3(02,).
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Classical W-algebras

Let f,...,n, beabasis ofthe Cartan subalgebra h of g.

Set p;[s] = p;t* and identify

U@ 'ol) = Clul=rl, . ml=r] | r = 1].

The classical W-algebra W(g) is defined by
ﬂ Ker V;,
1<i<n

where Vi,...,V, are the screening operators in

Cll[=rl - pmpl=r] | r=1].
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Take a triangular decomposition g=n_@®hdn

and consider the (affine) Harish-Chandra homomorphism
U(t‘lg[t‘l])b - U(r '),
the projection modulo the left ideal generated by 'n [r~].
The restriction to 3(g) yields the Harish-Chandra isomorphism
38 — wW(ty),

where W(Lg) is the classical WW-algebra associated with the

Langlands dual Lie algebra “g [Feigin and Frenkel, 1992].



Given ordered variables x,,...,xy, set

B (X1 xy) = Z Xj oo X

.

m

m



Given ordered variables x,,...,xy, set
hm(Xl,--.,.xN): Z xl'l...xl"”,

em(xla'-~axN): Z xil...xim.
For g = gly, under the Harish-Chandra isomorphism,

rA™ (t4+E[-1]1) ...(T + E[-1]n)

= em (T4 g [—1), .7+ py[-1)),



Given ordered variables x,,...,xy, set
hm(Xl,--.,xN): Z xl'l...xl"”,

em(-xla'-~a-xN): Z xil...xim.
For g = gly, under the Harish-Chandra isomorphism,

rA™ (t4+E[-1]1) ...(T + E[-1]n)

= em (T4 g [—1), .7+ py[-1)),

tr ) (T + E[—l]l) .. .(7' + E[—l}m)

= b (T4 [=10, T 4y [—1]).
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The Harish-Chandra image of the polynomial

Am(N) tr 8™ (1 + F[=11) ... (7 + F[~1]m)
equals:

hm(T + [, oo+ 1], 7 — 1], T — ,ul[—l]),

for the Lie algebra g = oy with N =2n+ 1;



The Harish-Chandra image of the polynomial

Am(N) tr 8™ (1 + F[=11) ... (7 + F[~1]m)
equals:

B (74 iy [, T [ 1], = (1], = g [ 1]),

for the Lie algebra g = oy with N =2n+1; and

Sha (T4 =1, T A+ g (21,7 =[], o7 — g [1])

(4 =7 17 = (=17 = g [-1]),

for the Lie algebra g = oy with N = 2n.



The Harish-Chandra image of the polynomial
Yn(=2n) tr S (7 + F[=1]1) ... (T + F[~1]))

with 1 < m < 2n equals:



The Harish-Chandra image of the polynomial
Ym(—2n) tr S (7 + F[~1]1) ... (7 + F[~1]n)
with 1 < m < 2n equals:
em(T+ (=10, T+ =1 T = [, T — gy [—1])

for the Lie algebra g = sp,,.



In the case g = 0,,, the Harish-Chandra image of the Pfaffian

PfF[—

o) oy [=1] -+ Fon-1)o@ny [—1]

0662;1
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In the case g = 0,,, the Harish-Chandra image of the Pfaffian

1
2nn!

PfF[_l] = Z sgnao - FU(I)U(Z)’[_I] cee FU(anl)o'(Zn)’[_l]

geBy,

is found by

PEF[—1] s (py[~1] = 7) .. ([~1] —7) 1.
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set of Segal-Sugawara vectors for 0y,11 and sp,,.



Corollary.  The elements  ¢,,, 0,44, ..., 0,,,, formacomplete

set of Segal-Sugawara vectors for 0y,11 and sp,,.

The elements  ¢,,, ¢4, oy_non_n: PEF[—1] form a

complete set of Segal-Sugawara vectors for 0.



Calculation of Harish-Chandra images

Bethe subalgebra Yangian characters
[transfer matrices] [Grothendieck ring]
Harish-Chandra
B(g) isomorphism charY(g)
classical limit classical limit
~ Harish-Chandra L
5(9) isomorphism W( g)
Feigin—Frenkel center classical W-algebra

[Segal-Sugawara vectors]
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The space of (skew-)symmetric harmonic tensors
sM(cVg...eCV)
N——
is an irreducible representation of the Yangian Y(oy) or Y(spy).

For Y(oy) this is one of the Kirillov—Reshetikhin modules;

for Y(spy) this is one of the fundamental modules.
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For Y(oy) their g-characters are given by

S M@ Xyt 1) N, e m— 1),

I<i < <imSN

with different conditions for B,, and D,;:

» 05,.1: index n -+ 1 occurs at most once;

> 09,0 indices n and n + 1 do not occur simultaneously.
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For Y(sp,,) the g-character is given by

> M@ A= 1) N, = m+ 1),

1<) < <im<2n

with the condition that if both i and i’ occur among the
summation indices asi =i.and i’ =i;forsome 1 <r <s <m,

thens —r<n-—i.



For Y(sp,,) the g-character is given by

> M@ A= 1) N, = m+ 1),

1<) < <im<2n

with the condition that if both i and i’ occur among the
summation indices asi =i.and i’ =i;forsome 1 <r <s <m,

thens —r<n-—i.

Use an equivalent form of the g-character due to

[Kuniba—Okado—Suzuki—Yamada, 2002].



