Feigin–Frenkel center and Yangian characters

Alexander Molev

University of Sydney

Invariants in vacuum modules

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

For the classical types, $\langle X, Y \rangle = \text{const} \cdot \text{tr} XY$,

$$h^{\vee} = \begin{cases} n & \text{for } \mathfrak{g} = \mathfrak{sl}_n, \quad \text{const} = 1 \\ N - 2 & \text{for } \mathfrak{g} = \mathfrak{o}_N, \quad \text{const} = \frac{1}{2} \\ n + 1 & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}, \quad \text{const} = 1. \end{cases}$$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r, -s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r,-s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The vacuum module at the critical level $V(\mathfrak{g})$ over $\widehat{\mathfrak{g}}$ is the quotient of the universal enveloping algebra $U(\widehat{\mathfrak{g}})$ by the left ideal generated by $\mathfrak{g}[t]$ and $K + h^{\vee}$.

$$\mathfrak{g}[t] \cdot 1 = 0, \qquad K \cdot 1 = -h^{\vee}.$$

$$\mathfrak{g}[t] \cdot 1 = 0, \qquad K \cdot 1 = -h^{\vee}.$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}).$

$$\mathfrak{g}[t] \cdot 1 = 0, \qquad K \cdot 1 = -h^{\vee}.$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}).$

Its elements are g[t]-invariants of the vacuum module

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = V(\mathfrak{g})^{\mathfrak{g}[t]} = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

$$\mathfrak{g}[t] \cdot 1 = 0, \qquad K \cdot 1 = -h^{\vee}.$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}).$

Its elements are g[t]-invariants of the vacuum module

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = V(\mathfrak{g})^{\mathfrak{g}[t]} = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

Any element of $\mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

Properties:

• The algebra $\mathfrak{z}(\hat{\mathfrak{g}})$ is commutative.

Properties:

- The algebra $\mathfrak{z}(\hat{\mathfrak{g}})$ is commutative.
- ▶ It can be regarded as a subalgebra of $U(t^{-1}g[t^{-1}])$.

Properties:

- The algebra $\mathfrak{z}(\hat{\mathfrak{g}})$ is commutative.
- ► It can be regarded as a subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.
- ► The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is invariant with respect to the translation operator *T* defined as the

derivation $T = -\partial_t$.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types *A*, *B*, *C*; V. Kac and D. Kazhdan, 1979. Detailed exposition: E. Frenkel, 2007.

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.

- ▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent.

- ▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent.
- Show that they generate $\mathfrak{z}(\hat{\mathfrak{g}})$ by taking the classical limit.

Taking classical limit we get a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$:

adjoint action with subsequent quotient modulo g[t].

Taking classical limit we get a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$:

adjoint action with subsequent quotient modulo g[t].

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$.

Taking classical limit we get a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$:

adjoint action with subsequent quotient modulo g[t].

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \ge 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

Example. Let $\mathfrak{g} = \mathfrak{sl}_2$ with the basis e, f, h. Then $P = h^2 + 4fe$ is the generator of $S(\mathfrak{sl}_2)^{\mathfrak{sl}_2}$. The algebra of $\mathfrak{sl}_2[t]$ -invariants in $S(t^{-1}\mathfrak{sl}_2[t^{-1}])$ is generated by the elements $P_{(r)}$ with $r \ge 0$, Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

Example. Let $\mathfrak{g} = \mathfrak{sl}_2$ with the basis e, f, h. Then $P = h^2 + 4f e$ is the generator of $S(\mathfrak{sl}_2)^{\mathfrak{sl}_2}$. The algebra of $\mathfrak{sl}_2[t]$ -invariants in $S(t^{-1}\mathfrak{sl}_2[t^{-1}])$ is generated by the elements $P_{(r)}$ with $r \ge 0$,

$$P_{(0)} = h[-1]^2 + 4f[-1]e[-1],$$

$$P_{(1)} = 2h[-1]h[-2] + 4f[-2]e[-1] + 4f[-1]e[-2], \quad etc.$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N[t,t^{-1}])$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N[t, t^{-1}])$$

and let $H^{(m)}$ and $A^{(m)}$ denote the symmetrizer and

anti-symmetrizer in

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_{}.$$

Theorem. All coefficients of the polynomials in $\tau = -d/dt$

tr $A^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$ = $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$,

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm},$

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm},$

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

[Chervov–Talalaev, 2006, Chervov–M., 2009].

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Use the notation i' = N - i + 1 and

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$

where $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Use the notation i' = N - i + 1 and

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$,

where $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$. Set

 $F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}]$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Use the notation i' = N - i + 1 and

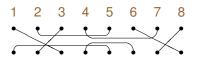
$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$,

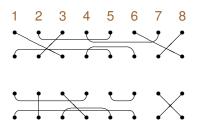
where $\varepsilon_i = -\varepsilon_{n+i} = 1$ for i = 1, ..., n. Set

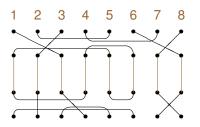
 $F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}]$

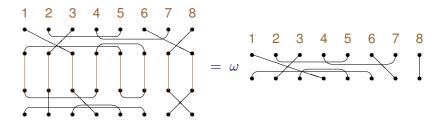
and

$$F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g}[t,t^{-1}]).$$

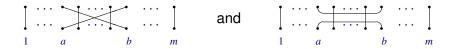




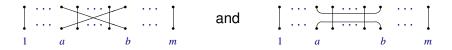




For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams



For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams



The symmetrizer in the Brauer algebra $\mathcal{B}_m(\omega)$

is the idempotent $s^{(m)}$ such that

 $s_{ab} s^{(m)} = s^{(m)} s_{ab} = s^{(m)}$ and $\epsilon_{ab} s^{(m)} = s^{(m)} \epsilon_{ab} = 0.$

Action in tensors

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

where

$$Q_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

 $s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

 $s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

where

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

 $s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

where

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$

under the action in tensors,

$$S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m.$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Set

$$\gamma_m(\omega) = \frac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = \begin{cases} N & \text{for } \mathfrak{g} = \mathfrak{o}_N \\ -2n & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

 $\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$

 $=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

$$=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

$$\gamma_m(\omega) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$
$$= \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

Moreover, in the case $\mathfrak{g} = \mathfrak{o}_{2n}$, the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1].$$

belongs to $\mathfrak{z}(\widehat{\mathfrak{o}}_{2n})$.

Classical \mathcal{W} -algebras

Classical \mathcal{W} -algebras

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} .

Classical *W*-algebras

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[s] = \mu_i t^s$ and identify

 $\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[-r], \dots, \mu_n[-r] \mid r \ge 1\right].$

Classical \mathcal{W} -algebras

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[s] = \mu_i t^s$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[-r], \dots, \mu_n[-r] \mid r \ge 1\right].$$

The classical $\mathcal{W}\text{-algebra}\ \mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \bigcap_{1 \leqslant i \leqslant n} \operatorname{Ker} V_i,$$

Classical *W*-algebras

Let μ_1, \ldots, μ_n be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[s] = \mu_i t^s$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[-r], \dots, \mu_n[-r] \mid r \ge 1\right].$$

The classical $\mathcal{W}\text{-algebra}\ \mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \bigcap_{1 \leqslant i \leqslant n} \operatorname{Ker} V_i,$$

where V_1, \ldots, V_n are the screening operators in $\mathbb{C} [\mu_1[-r], \ldots, \mu_n[-r] \mid r \ge 1].$ Take a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

Take a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

Take a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

Take a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

Take a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_+[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

where $\mathcal{W}({}^{L}\mathfrak{g})$ is the classical \mathcal{W} -algebra associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$ [Feigin and Frenkel, 1992].

Given ordered variables x_1, \ldots, x_N , set

$$h_m(x_1,\ldots,x_N) = \sum_{i_1 \leq \cdots \leq i_m} x_{i_1} \cdots x_{i_m},$$
$$e_m(x_1,\ldots,x_N) = \sum_{i_1 > \cdots > i_m} x_{i_1} \cdots x_{i_m}.$$

Given ordered variables x_1, \ldots, x_N , set

$$h_m(x_1,\ldots,x_N) = \sum_{i_1 \leqslant \cdots \leqslant i_m} x_{i_1} \ldots x_{i_m},$$
$$e_m(x_1,\ldots,x_N) = \sum_{i_1 > \cdots > i_m} x_{i_1} \ldots x_{i_m}.$$

For $\mathfrak{g} = \mathfrak{gl}_N$, under the Harish-Chandra isomorphism,

tr
$$A^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

 $\mapsto e_m(\tau + \mu_1[-1], \dots, \tau + \mu_N[-1]),$

Given ordered variables x_1, \ldots, x_N , set

$$h_m(x_1,\ldots,x_N) = \sum_{i_1 \leqslant \cdots \leqslant i_m} x_{i_1} \ldots x_{i_m},$$
$$e_m(x_1,\ldots,x_N) = \sum_{i_1 > \cdots > i_m} x_{i_1} \ldots x_{i_m}.$$

For $\mathfrak{g} = \mathfrak{gl}_N$, under the Harish-Chandra isomorphism,

tr
$$A^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

 $\mapsto e_m(\tau + \mu_1[-1], \dots, \tau + \mu_N[-1]),$

tr $H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$ $\mapsto h_m(\tau + \mu_1[-1], \dots, \tau + \mu_N[-1]).$

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots \tau - \mu_1[-1]),$$

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots, \tau - \mu_1[-1]),$$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1;

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots, \tau - \mu_1[-1]),$$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1; and

$$\frac{1}{2}h_m(\tau+\mu_1[-1],\ldots,\tau+\mu_{n-1}[-1],\tau-\mu_n[-1],\ldots,\tau-\mu_1[-1])$$

+ $\frac{1}{2}h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_{n-1}[-1], \ldots, \tau - \mu_1[-1]),$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n.

$$\gamma_m(-2n) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

with $1 \leq m \leq 2n$ equals:

$$\gamma_m(-2n) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

with $1 \leq m \leq 2n$ equals:

$$e_m(\tau + \mu_1[-1], \dots, \tau + \mu_n[-1], \tau, \tau - \mu_n[-1], \dots, \tau - \mu_1[-1])$$

for the Lie algebra $\mathfrak{g} = \mathfrak{sp}_{2n}$.

In the case $g = o_{2n}$, the Harish-Chandra image of the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is found by

In the case $g = o_{2n}$, the Harish-Chandra image of the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is found by

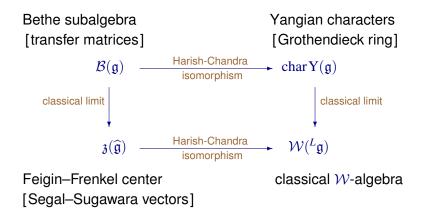
$$\operatorname{Pf} F[-1] \mapsto \left(\mu_1[-1] - \tau \right) \dots \left(\mu_n[-1] - \tau \right) 1.$$

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n 2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n 2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n-22n-2}, \Pr[F[-1]]$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n} .

Calculation of Harish-Chandra images



The space of (skew-)symmetric harmonic tensors

$$S^{(m)}(\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m)$$

is an irreducible representation of the Yangian $Y(\mathfrak{o}_N)$ or $Y(\mathfrak{sp}_N)$.

The space of (skew-)symmetric harmonic tensors

$$S^{(m)}(\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m)$$

is an irreducible representation of the Yangian $Y(\mathfrak{o}_N)$ or $Y(\mathfrak{sp}_N)$.

For $Y(\mathfrak{o}_N)$ this is one of the Kirillov–Reshetikhin modules;

The space of (skew-)symmetric harmonic tensors

$$S^{(m)}(\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m)$$

is an irreducible representation of the Yangian $Y(\mathfrak{o}_N)$ or $Y(\mathfrak{sp}_N)$.

For $Y(\mathfrak{o}_N)$ this is one of the Kirillov–Reshetikhin modules;

for $Y(\mathfrak{sp}_N)$ this is one of the fundamental modules.

For $Y(\mathfrak{o}_N)$ their *q*-characters are given by

$$\sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \, \lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

For $Y(\mathfrak{o}_N)$ their *q*-characters are given by

$$\sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \,\lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

• o_{2n+1} : index n + 1 occurs at most once;

For $Y(o_N)$ their *q*-characters are given by

$$\sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \, \lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

- o_{2n+1} : index n + 1 occurs at most once;
- \mathfrak{o}_{2n} : indices *n* and *n* + 1 do not occur simultaneously.

For $Y(\mathfrak{sp}_{2n})$ the *q*-character is given by

$$\sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \dots \lambda_{i_m}(u-m+1),$$

For $Y(\mathfrak{sp}_{2n})$ the *q*-character is given by

$$\sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \ldots \lambda_{i_m}(u-m+1),$$

with the condition that if both i and i' occur among the

summation indices as $i = i_r$ and $i' = i_s$ for some $1 \le r < s \le m$,

then $s - r \leq n - i$.

For $Y(\mathfrak{sp}_{2n})$ the *q*-character is given by

$$\sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \dots \lambda_{i_m}(u-m+1),$$

with the condition that if both i and i' occur among the

summation indices as $i = i_r$ and $i' = i_s$ for some $1 \le r < s \le m$,

then $s - r \leq n - i$.

Use an equivalent form of the *q*-character due to

```
[Kuniba–Okado–Suzuki–Yamada, 2002].
```