Overview Hermiticity ESM BCS Theory What have we done? Conclusio

Non–Hermitian BCS pairing Hamiltonian and Generalised Exclusion Statistics

AMIR MOGHADDAM

Centre for Mathematical Physics, The University of Queensland, Australia. Under the supervision of : A/Prof. Jon Links and A/Prof. Yao-Zhong Zhang

Lorne, December 2012

J. Links, A. Moghaddam and Y.Z. Zhang ; "*Deconfined quantum criticality and generalized exclusion statistics in a non-Hermitian BCS model*"; J. Phys. A: Math. Theor. 45 (2012) 462002.

- Introduction
 - The story of Hermiticity
 - 2 Exactly Solvable Quantum Models (ESQM)
 - BCS Model
- What have we done?
- Conclusion

- The story of Hermiticity
 - Hermiticity mathematically guarantees an operator's eigenvalues to be real.
 - Since the 1950s, *non-Hermitian Hamiltonians* with real spectrum have been identified and applied in various contexts.

Year	Author(s)	Reference	Explanation
1959	T. T. Wu	"Ground State of a Bose System of Hard Spheres", Phys. Rev. 115 , 1390.	A non-Hermitian Hamiltonians for the ground state of Bose sys- tem of hard spheres
1992	T. Hollowood	"Solitons in affine Toda field theory", Nucl.Phys. B384 , 523.	a non-Hermitian Hamiltonians for complex Toda lattice
1998	C.M.Bender S.Boettcher	"Real spectra in non-Hermitian Hamiltoni- ans having PT symmetries", Phys.Rev.Lett. 80 , 5243.	Describing classical and quan- tum properties of non-Hermitian Hamiltonians <i>PT</i> -symmetric Hamiltonian.
2007	C.Korff R.A.Weston	"PT Symmetry on the Lattice: The Quan- tum Group invariant XXZ spin-chain", J.Phys. A40, 8845.	Connecting integrable lattice systems and non–Hermitian Hamiltonians.
2012	C. M. Bender V. Branchina E. Messina	"Ordinary versus PT-symmetric ϕ^3 quantum field theory", arXiv:1201.1244v1 [hep-th].	Discussing the properties of an analogue of the PT-symmetric quantum-mechanics described by the Hamiltonian $p^2 + ix^3$ in quantum field theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An Exactly Solvable Quantum Model means a model Hamiltonian whose eigenvalues and eigenstates are exactly determent by a method known as *Bethe ansatz*.

- The 1D Heisenberg spin chain model was solved by H. A. Bethe in 1931
- The 1D Bose gas model was solved by E. Lieb and W. Liniger in 1963.
- A reduced BCS pairing Hamiltonian was solved by R. W. Richardson in 1963.
- The 1D Hubbard model was solved by E. Lieb and F. Wu in 1968.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Bardeen, Cooper and Schrieffer (BCS) theory was presented in 1957. It became one of the most successful theories in the area of Superconductivity:

$$H_{BCS} = \sum_{j=1}^{L} \epsilon_j n_j - \sum_{j,k=1}^{L} G_{jk} c_{k+}^{\dagger} c_{k-}^{\dagger} c_{j-} c_{j+}.$$

where:

j: varies from 1 to *L*, labels a shell of doubly degenerate particle energy levels with energy ϵ_i .

 $c_{j\pm}, c_{j\pm}^{\dagger}$: are the annihilation and creation operators for the fermions at level j. \pm refer to time-reversed pairs. n_j : equal to $c_{j+}^{\dagger}c_{j+} + c_{j-}^{\dagger}c_{j-}$ is the fermion number operator for level j.

 G_{jk} : coupling variables.

Russian dolls are a set of wooden dolls which can be pulled apart to reveal another figurine of the same sort inside.

The following model (A. LeClair et al., 2004) has been named the *Russian doll BCS* model, since its renormalisation group flow is one which displays a cyclic nature rather than flowing to a fixed point

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

$$H_{RD} = \sum_{j=1}^{L} \epsilon_j n_j - G \sum_{j$$

Its integrability was shown by C. Dunning and J. Links, 2004.

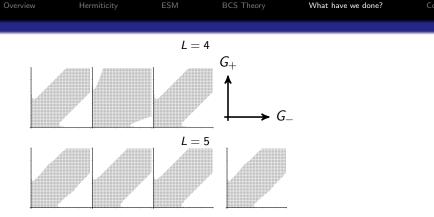
A Non-Hermitian Variant of BCS pairing Hamiltonian

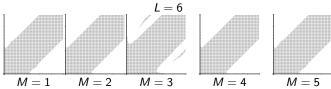
In connection with the BCS Hamiltonian, the coupling variables can accept different values:

$$G_{jk} = \begin{cases} G_{+} & j < k \\ \frac{G_{+} + G_{-}}{2} & j = k \\ G_{-} & j > k \end{cases}$$

We will choose the $\epsilon_j = (j - \frac{L+1}{2}) \delta$ to be uniformly and symmetrically distributed around zero where $\delta > 0$ provides the level spacing. With respect to G_+ and G_- the possible ESQMs are:

G ₊ & G ₋	Model	Self–adjoint Hamiltonian	Real spectrum
Both real & equal	Richardson	\checkmark	\checkmark
Complex conjugate pair	Russian Doll	\checkmark	\checkmark
Both real	Ours	×	?





Boundary lines: $G_+ - G_- = \pm 2\delta$

Solubility & BA of the new model

The exact solution for the model was obtained by Quantum Inverse Scattering Method and algebraic Bethe ansatz and adapted from RD-model integrability. To describe the exact solution, we consider:

$$G_+=rac{2\eta e^lpha}{e^lpha-e^{-lpha}}$$
 ; $G_-=rac{2\eta e^{-lpha}}{e^lpha-e^{-lpha}}$

It turns out that the exact solution of energy spectrum is:

$$E=2\sum_{j=1}^{m}v_{j}$$

M

where the v_i are Bethe ansatz solutions:

$$e^{2\alpha}P(v_k+\eta)\prod_{j\neq k}^{M}(v_k-v_j-\eta)=P(v_k)\prod_{j\neq k}^{M}(v_k-v_j+\eta); \ k=1,\ldots,M$$

where: $P(u)=\prod_{j=1}^{L}(u-\epsilon_j-\eta/2).$

 $G_+ - G_- = \pm 2\delta \Rightarrow \eta = \pm \delta$, so, $\epsilon_j = \eta(j - \frac{L+1}{2})$, the Bethe ansatz equations become:

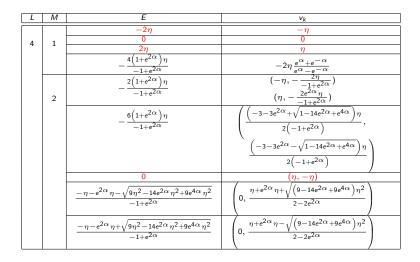
$$\begin{split} &\prod_{l=1}^{L-1} \left(v_k - \eta \left(l - \frac{L}{2} \right) \right) \left(e^{\alpha} \left(v_k + \frac{\eta L}{2} \right) \prod_{j \neq k}^{M} (v_k - v_j - \eta) \\ &- e^{-\alpha} \left(v_k - \frac{\eta L}{2} \right) \prod_{j \neq k}^{M} (v_k - v_j + \eta) \right) = 0 \end{split}$$

In this form it is clear that we obtain a solution set by choosing $v_k \in S$, k = 1, ..., M, for

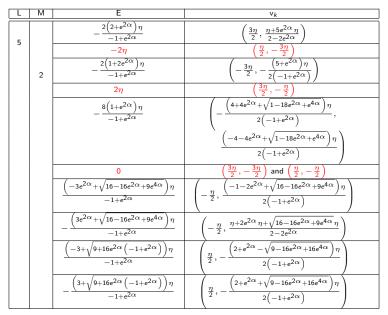
$$S = \{\eta(j - L/2) : j = 1, ..., L - 1\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Overview	Hermiticity	ESM	BCS Theory	What have we done?	Conclusion



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Based on our investigations, we identified a key property for the distribution and number of states for α independent roots.

Fermionic system	Our model	
	•	

The number of ways that M FermionsThe number of ways that M quasi-
particles occupy L levels : $\frac{L!}{(L-M)!M!}$ particles occupy L levels : $\frac{(L-M)!}{(L-2M)!M!}$

The Fermionic system is equivalent to the first term of the Hamiltonian (i.e. the coupling variables G_+ and G_- are zero). By adding the second term with $G_+ - G_- = \pm 2\delta$ the energy levels vary in such a way that the particles reside in between the previous energy gaps and cannot be placed into adjacent levels.

- It turns out that this many-particle system with non-Hermitian Hamiltonian yields a real spectrum for some regions in parameter space. This fact supports the proposition that the condition of hermiticity on a Hamiltonian can be replaced by the weaker condition.
- This model possesses some remarkable properties which are absent in the case of the usual BCS model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

It is found that the α-independent spectrum of this model can be associated to exotic quasi-particles obeying generalised exclusion statistics, in the sense proposed by Haldane in 1991.

Overview	Hermiticity	ESM	BCS Theory	What have we done?	Conclusion

THANK YOU!