◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some field-theoretic ideas out of contact geometry and elementary topology

Daniel V. Mathews

dan.v.mathews@gmail.com

ANZAMP Inaugural Meeting 5 December 2012

Strings, holomorphic curves, beyond

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Overview
- Contact geometry
- 2 Contact TQFT
- 3 Strings, holomorphic curves, beyond

 Much progress in the fields of symplectic and contact geometry in recent years.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Including much that is directly related to physics — Hamiltonian dynamics, mirror symmetry, etc.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

- Much progress in the fields of symplectic and contact geometry in recent years.
- Including much that is directly related to physics Hamiltonian dynamics, mirror symmetry, etc.
- Most of these developments require a lot of background:
 - Fredholm / index theory of Cauchy-Riemann operators
 - Moduli spaces of pseudo-holomorphic curves
 - Delicate differential geometry and topology
 - Intricate algebraic structures keeping track of analytic data

Overview

- Much progress in the fields of symplectic and contact geometry in recent years.
- Including much that is directly related to physics Hamiltonian dynamics, mirror symmetry, etc.
- Most of these developments require a lot of background:
 - Fredholm / index theory of Cauchy-Riemann operators
 - Moduli spaces of pseudo-holomorphic curves
 - Delicate differential geometry and topology
 - Intricate algebraic structures keeping track of analytic data
- However, *in the simplest cases* some of this structure reduces to some very physical-looking *combinatorics and algebra* which is interesting in its own right.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Overview

This talk will:

• Give some *very* brief background to the subject of contact geometry.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

This talk will:

• Give some *very* brief background to the subject of contact geometry.

 Discuss some of these algebraic and combinatorial results in their own right. (No symplectic geometry / contact topology / holomorphic curves assumed.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview

This talk will:

- Give some *very* brief background to the subject of contact geometry.
- Discuss some of these algebraic and combinatorial results in their own right. (No symplectic geometry / contact topology / holomorphic curves assumed.)
- Indicate some of the connections to string topology and holomorphic invariants.

Strings, holomorphic curves, beyond $_{\circ\circ\circ}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Contact geometry

Arises out of optics and mechanics.

"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a 3-dimensional manifold M is a totally non-integrable 2-plane field.

Strings, holomorphic curves, beyond $_{\circ\circ\circ}$

Contact geometry

Arises out of optics and mechanics.

"The odd-dimensional sibling of symplectic geometry"

Definition

A contact structure ξ on a 3-dimensional manifold M is a totally non-integrable 2-plane field.

E.g. \mathbb{R}^3 with $\xi = \ker \alpha$, where $\alpha = dz - y dx$.

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Convex surfaces and dividing sets

Giroux (1991): theory of *convex surfaces*. A contact structure near a disc D (or more general surface) is determined up to isotopy by a set of non-intersecting curves or *dividing set* Γ .

Convex surfaces and dividing sets

Giroux (1991): theory of *convex surfaces*.

A contact structure near a disc D (or more general surface) is determined up to isotopy by a set of non-intersecting curves or *dividing set* Γ .

Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along Γ

Convex surfaces and dividing sets

Giroux (1991): theory of *convex surfaces*.

A contact structure near a disc D (or more general surface) is determined up to isotopy by a set of non-intersecting curves or *dividing set* Γ .

Roughly speaking, the contact planes are

- Tangent to ∂D
- "Perpendicular" to D precisely along Γ

So a *chord diagram* on a disc describes a contact structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

So a chord diagram on a disc describes a contact structure.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Shading = visible side of contact planes.
- Similar to the structure of *sutures*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

Strings, holomorphic curves, beyond $_{\circ\circ\circ}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:

Strings, holomorphic curves, beyond

Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.

- Overtwisted: contains an overtwisted disc.
- Tight: does not.

An overtwisted disc is:

 Overtwisted contact geometry reduces to (well-understood) homotopy theory. Tight contact structures offer important topological information.

Strings, holomorphic curves, beyond

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Contact TQFT

- "Inner product" on chord diagrams
- Bypass surgery
- Contact QFT = Quantum pawn dynamics
- Quantum pawn dynamics
- Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An "inner product" on chord diagrams

There's a bilinear form on chord diagrams defined by *inserting into a cylinder*.

An "inner product" on chord diagrams

There's a bilinear form on chord diagrams defined by *inserting into a cylinder*.

Strings, holomorphic curves, beyond

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

ъ

An "Inner product" on chord diagrams

Note curves don't meet at corners! We treat corners as shown.

Definition (M.)

(1	if the resulting curves on the cylinder
$\langle \Gamma_0 \Gamma_1 \rangle = \langle$	form a single connected curve;
lo	if the result is disconnected.

NB: This "inner product" is not symmetric!

Strings, holomorphic curves, beyond

Contact meaning of the "inner product"

Proposition (Eliashberg)

Let Γ_0, Γ_1 be chord diagrams. The following are equivalent:

- $\langle \Gamma_0 | \Gamma_1 \rangle = 1.$
- The solid cylinder with dividing set Γ₀ on the bottom and Γ₁ on the top has a tight contact structure.

Strings, holomorphic curves, beyond

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Strings, holomorphic curves, beyond

Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries*.

Proposition

With $\Gamma, \Gamma', \Gamma''$ as above, for any Γ_1 ,

 $\langle \Gamma | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle + \langle \Gamma'' | \Gamma_1 \rangle = 0.$

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bypass surgery

Idea of proof:

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bypass surgery

Idea of proof:

If $\langle\cdot|\cdot\rangle$ is to be nondegenerate, we should have the following bypass relation.

$$\bigcirc$$
 + \bigcirc + \bigcirc = 0

Strings, holomorphic curves, beyond

Bypass surgery

Idea of proof:

If $\langle\cdot|\cdot\rangle$ is to be nondegenerate, we should have the following bypass relation.

$$()$$
 + $()$ + $()$ = $()$

So we define a vector space

$$V_n = \frac{\mathbb{Z}_2 \langle \text{Chord diagrams with } n \text{ chords} \rangle}{\text{Bypass relation}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) \rightsquigarrow "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) \rightsquigarrow "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

(Also: chord diagrams / cylinders form a *category* with distinguished bypass triples — a *triangulated category*. V_n is its *Grothiendick group*.)

Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a (2+1)-dimensional *topological quantum field theory*.

- Contact structure near disc (2-dim) → "states" in V_n
- Contact structure over cylinder (2+1-dim) \rightsquigarrow element of \mathbb{Z}_2 .
- "Possibility of a tight contact structure from one state to another" → inner product ⟨·|·⟩ : V_n ⊗ V_n → Z₂.

(Also: chord diagrams / cylinders form a *category* with distinguished bypass triples — a *triangulated category*. V_n is its *Grothiendick group*.)

Theorem (M.)

 V_n has dimension 2^{n-1} and is isomorphic to 1-dimensional quantum pawn dynamics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantum Pawn Dynamics

Consider pawns on a finite 1-dimensional chessboard. Pawns move left to right. "Inner product" describes the possibility of pawn moves.

Definition (Pawn "inner product")

$$\langle w_0 | w_1 \rangle = \begin{cases} 1 & \text{if it is possible for pawns to move from } w_0 \text{ to } w_1 \\ & (\text{this includes the case } w_0 = w_1); \\ 0 & \text{if not.} \end{cases}$$

Very asymmetric — in fact, "booleanization of a partial order". E.g.

Quantum Pawn Dynamics

Consider pawns on a finite 1-dimensional chessboard. Pawns move left to right. "Inner product" describes the possibility of pawn moves.

Definition (Pawn "inner product")

 $\langle w_0 | w_1 \rangle = \begin{cases} 1 & \text{if it is possible for pawns to move from } w_0 \text{ to } w_1 \\ & (\text{this includes the case } w_0 = w_1); \\ 0 & \text{if not.} \end{cases}$

Very asymmetric — in fact, "booleanization of a partial order". E.g.

Strings, holomorphic curves, beyond

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chord diagram of a chessboard

Construction of the *slalom skiing* chord diagram of a chessboard.

$$W =$$

Strings, holomorphic curves, beyond

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chord diagram of a chessboard

Construction of the *slalom skiing* chord diagram of a chessboard.

$$W =$$

Strings, holomorphic curves, beyond

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chord diagram of a chessboard

Construction of the *slalom skiing* chord diagram of a chessboard.

Strings, holomorphic curves, beyond

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Square decomposition

Pawns correspond to a decomposition of the disc into squares.

Strings, holomorphic curves, beyond

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Square decomposition

Pawns correspond to a decomposition of the disc into squares.

Strings, holomorphic curves, beyond

Square decomposition

Pawns correspond to a decomposition of the disc into squares.

Note after decomposing along green lines, each square is

Behave partly like *particles* (can be created/annihilated) and partly like *qubits* (binary). Reminiscent of stat. mech...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (M.)

 V_n has a basis given by the diagrams of chessboards:

 $V_n \cong \mathbb{Z}_2 \langle Chessboards with n - 1 squares \rangle.$

For any two chessboards w_0, w_1 ,

$$\langle w_0 | w_1 \rangle = \langle \Gamma_{w_0} | \Gamma_{w_1} \rangle.$$

E.g.

Theorem (M.)

 V_n has a basis given by the diagrams of chessboards:

 $V_n \cong \mathbb{Z}_2 \langle Chessboards with n - 1 squares \rangle.$

For any two chessboards w_0, w_1 ,

 $\langle \textbf{\textit{w}}_0 | \textbf{\textit{w}}_1 \rangle = \langle \Gamma_{\textbf{\textit{w}}_0} | \Gamma_{\textbf{\textit{w}}_1} \rangle.$

E.g.

Theorem (M.)

 V_n has a basis given by the diagrams of chessboards:

 $V_n \cong \mathbb{Z}_2 \langle Chessboards with n - 1 squares \rangle.$

For any two chessboards w_0, w_1 ,

$$\langle w_0 | w_1 \rangle = \langle \Gamma_{w_0} | \Gamma_{w_1} \rangle.$$

E.g.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Contact TQFT

- Strings, holomorphic curves, beyond
 - Stringy interpretation
 - Holomorphic invariants

(日) (日) (日) (日) (日) (日) (日)

A "stringy" interpretation of V_n

Consider, instead of chord diagrams, a *string complex*:

- oriented curves on *D* which may intersect, between 2n fixed points on ∂D, up to homotopy;
- $\widehat{CS}(D^2, F_n) =$ free vector space generated by them;
- differential defined by resolving crossings:

$$\xrightarrow{\uparrow} \rightarrow \xrightarrow{}$$

(日) (日) (日) (日) (日) (日) (日)

A "stringy" interpretation of V_n

Consider, instead of chord diagrams, a *string complex*:

- oriented curves on *D* which may intersect, between 2n fixed points on ∂D, up to homotopy;
- $\widehat{CS}(D^2, F_n) =$ free vector space generated by them;
- differential defined by resolving crossings:

$$\xrightarrow{\uparrow} \rightarrow \xrightarrow{} \xrightarrow{}$$

Theorem (M.–Schoenfeld)

 $\partial^2 = 0$ and the homology $\widehat{HS}(D^2, F_n)$ of the string complex is isomorphic to V_n .

A "stringy" interpretation of V_n

Consider, instead of chord diagrams, a *string complex*:

- oriented curves on *D* which may intersect, between 2n fixed points on ∂D, up to homotopy;
- $\widehat{CS}(D^2, F_n) =$ free vector space generated by them;
- differential defined by resolving crossings:

$$\xrightarrow{\uparrow} \rightarrow \xrightarrow{} \xrightarrow{}$$

Theorem (M.–Schoenfeld)

 $\partial^2 = 0$ and the homology $\widehat{HS}(D^2, F_n)$ of the string complex is isomorphic to V_n .

The "reason" for this:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The holomorphic origin of V_n

We've seen V_n is:

- Chord diagrams modulo bypass relation
- Z₂(Chessboards)
- String homology (complex with ∂ resolving crossings)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The holomorphic origin of V_n

We've seen V_n is:

- Chord diagrams modulo bypass relation
- \mathbb{Z}_2 (Chessboards)
- String homology (complex with ∂ resolving crossings)

Also, *V_n* is given by *Sutured Floer homology*:

Theorem (M.)

$$V_n \cong SFH(D^2 \times S^1, F_n \times S^1)$$

The holomorphic origin of V_n

We've seen V_n is:

- Chord diagrams modulo bypass relation
- Z₂(Chessboards)
- String homology (complex with ∂ resolving crossings)

Also, V_n is given by Sutured Floer homology:

Theorem (M.)

$$V_n \cong SFH(D^2 \times S^1, F_n \times S^1)$$

SFH is an invariant of sutured manifolds (M, Γ) defined by...

- Taking a Heegaard decomposition $\Sigma, \alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k$
- Considering holomorphic curves in Σ × I × ℝ as a symplectic manifold with an almost complex structure
- Chain complex generated by boundary conditions
- Differential counting index-1 holomorphic curves
- Homology of this complex is $SFH(M, \Gamma)$.

Thanks for listening!

References:

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT, Alg. & Geom. Top. 11 (2011) 2681–2739.
- D. Mathews, *Sutured TQFT, torsion, and tori* (2011) arXiv 1102.3450.
- D. Mathews, *Itsy bitsy topological field theory* (2012) arXiv 1201.4584.
- D. Mathews and E. Schoenfeld, *Dimensionally-reduced sutured Floer homology as a string homology* (2012) arXiv 1210.7394.
- D. Mathews, Contact topology and holomorphic invariants via elementary combinatorics, forthcoming.