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Overview

Much progress in the fields of symplectic and contact
geometry in recent years.
Including much that is directly related to physics —
Hamiltonian dynamics, mirror symmetry, etc.

Most of these developments require a lot of background:
Fredholm / index theory of Cauchy-Riemann operators
Moduli spaces of pseudo-holomorphic curves
Delicate differential geometry and topology
Intricate algebraic structures keeping track of analytic data

However, in the simplest cases some of this structure
reduces to some very physical-looking combinatorics and
algebra which is interesting in its own right.
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Overview

This talk will:
Give some very brief background to the subject of contact
geometry.

Discuss some of these algebraic and combinatorial results
in their own right.
(No symplectic geometry / contact topology / holomorphic
curves assumed.)
Indicate some of the connections to string topology and
holomorphic invariants.
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Contact geometry

Arises out of optics and mechanics.
“The odd-dimensional sibling of symplectic geometry”

Definition
A contact structure ξ on a 3-dimensional manifold M is a totally
non-integrable 2-plane field.

E.g. R3 with ξ = kerα, where α = dz − y dx .
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Convex surfaces and dividing sets

Giroux (1991): theory of convex surfaces.
A contact structure near a disc D (or more general surface) is
determined up to isotopy by a set of non-intersecting curves or
dividing set Γ.

Roughly speaking, the contact planes are
Tangent to ∂D
“Perpendicular” to D precisely along Γ
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Chord diagrams

So a chord diagram on a disc describes a contact structure.
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Shading = visible side of contact planes.
Similar to the structure of sutures.
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Overtwisted contact structures

Eliashberg (1989): fundamentally 2 types of contact structures.
Overtwisted: contains an overtwisted disc.
Tight: does not.

An overtwisted disc is:

Overtwisted contact geometry reduces to
(well-understood) homotopy theory. Tight contact
structures offer important topological information.
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An “inner product” on chord diagrams

There’s a bilinear form on chord diagrams defined by inserting
into a cylinder.

Γ1

Γ0

 



Introduction Contact TQFT Strings, holomorphic curves, beyond

An “inner product” on chord diagrams

There’s a bilinear form on chord diagrams defined by inserting
into a cylinder.

Γ1

Γ0
 



Introduction Contact TQFT Strings, holomorphic curves, beyond

An “Inner product” on chord diagrams

Note curves don’t meet at corners! We treat corners as shown.

Definition (M.)

〈Γ0|Γ1〉 =


1 if the resulting curves on the cylinder

form a single connected curve;
0 if the result is disconnected.

NB: This “inner product” is not symmetric!
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Contact meaning of the “inner product”

Proposition (Eliashberg)

Let Γ0, Γ1 be chord diagrams. The following are equivalent:
〈Γ0|Γ1〉 = 1.
The solid cylinder with dividing set Γ0 on the bottom and Γ1
on the top has a tight contact structure.
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Bypass surgery

In a chord diagram on disc D, consider a sub-disc B as shown:

Two natural ways to adjust this chord diagram, consistent with
the colours: bypass surgeries.

Γ′ Γ Γ′′

Proposition

With Γ, Γ′, Γ′′ as above, for any Γ1,

〈Γ|Γ1〉+ 〈Γ′|Γ1〉+ 〈Γ′′|Γ1〉 = 0.
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Bypass surgery

Idea of proof:

1 + 0 + 1 = 0

If 〈·|·〉 is to be nondegenerate, we should have the following
bypass relation.

+ + = 0

So we define a vector space

Vn =
Z2〈Chord diagrams with n chords〉

Bypass relation
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Contact TQFT = Quantum pawn dynamics

These definitions give many of the properties of a
(2+1)-dimensional topological quantum field theory.

Contact structure near disc (2-dim) “states” in Vn

Contact structure over cylinder (2+1-dim) element of Z2.
“Possibility of a tight contact structure from one state to
another” inner product 〈·|·〉 : Vn ⊗ Vn −→ Z2.

(Also: chord diagrams / cylinders form a category with
distinguished bypass triples — a triangulated category. Vn is its
Grothiendick group.)

Theorem (M.)

Vn has dimension 2n−1 and is isomorphic to 1-dimensional
quantum pawn dynamics.
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Quantum Pawn Dynamics

Consider pawns on a finite 1-dimensional chessboard.
Pawns move left to right.
“Inner product” describes the possibility of pawn moves.

Definition (Pawn “inner product”)

〈w0|w1〉 =


1 if it is possible for pawns to move from w0 to w1

(this includes the case w0 = w1);
0 if not.

Very asymmetric — in fact, “booleanization of a partial order”.
E.g.

〈 P P P | P P P 〉 = 1
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Chord diagram of a chessboard

Construction of the slalom skiing chord diagram of a
chessboard.

w = P

↔

0
1

2

−1

−2

3

4

5

6
7

↔ = Γw



Introduction Contact TQFT Strings, holomorphic curves, beyond

Chord diagram of a chessboard

Construction of the slalom skiing chord diagram of a
chessboard.

w = P

↔

0
1

2

−1

−2

3

4

5

6
7

↔ = Γw



Introduction Contact TQFT Strings, holomorphic curves, beyond

Chord diagram of a chessboard

Construction of the slalom skiing chord diagram of a
chessboard.

w = P

↔

0
1

2

−1

−2

3

4

5

6
7

↔ = Γw



Introduction Contact TQFT Strings, holomorphic curves, beyond

Square decomposition

Pawns correspond to a decomposition of the disc into squares.

P

0
1

2

−1

−2

3

4

5

6
7

↔

Note after decomposing along green lines, each square is

or

Behave partly like particles (can be created/annihilated) and
partly like qubits (binary). Reminiscent of stat. mech...
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Theorem (M.)
Vn has a basis given by the diagrams of chessboards:

Vn ∼= Z2〈Chessboards with n − 1 squares〉.

For any two chessboards w0,w1,

〈w0|w1〉 = 〈Γw0 |Γw1〉.

E.g.
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A “stringy” interpretation of Vn

Consider, instead of chord diagrams, a string complex:
oriented curves on D which may intersect, between 2n
fixed points on ∂D, up to homotopy;
ĈS(D2,Fn) = free vector space generated by them;
differential defined by resolving crossings:

Theorem (M.–Schoenfeld)

∂2 = 0 and the homology ĤS(D2,Fn) of the string complex is
isomorphic to Vn.

The “reason” for this:

∂ = + +
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ĈS(D2,Fn) = free vector space generated by them;
differential defined by resolving crossings:

Theorem (M.–Schoenfeld)
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ĈS(D2,Fn) = free vector space generated by them;
differential defined by resolving crossings:

Theorem (M.–Schoenfeld)
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The holomorphic origin of Vn

We’ve seen Vn is:
Chord diagrams modulo bypass relation
Z2〈Chessboards〉
String homology (complex with ∂ resolving crossings)

Also, Vn is given by Sutured Floer homology:

Theorem (M.)

Vn ∼= SFH(D2 × S1,Fn × S1)

SFH is an invariant of sutured manifolds (M, Γ) defined by...
Taking a Heegaard decomposition Σ, α1, . . . , αk , β1, . . . , βk
Considering holomorphic curves in Σ× I × R as a
symplectic manifold with an almost complex structure
Chain complex generated by boundary conditions
Differential counting index-1 holomorphic curves
Homology of this complex is SFH(M, Γ).
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Thanks for listening!
References:

D. Mathews, Chord diagrams, contact-topological quantum field
theory, and contact categories, Alg. & Geom. Top. 10 (2010)
2091–2189

D. Mathews, Sutured Floer homology, sutured TQFT and
non-commutative QFT, Alg. & Geom. Top. 11 (2011)
2681–2739.

D. Mathews, Sutured TQFT, torsion, and tori (2011) arXiv
1102.3450.

D. Mathews, Itsy bitsy topological field theory (2012) arXiv
1201.4584.

D. Mathews and E. Schoenfeld, Dimensionally-reduced sutured
Floer homology as a string homology (2012) arXiv 1210.7394.

D. Mathews, Contact topology and holomorphic invariants via
elementary combinatorics, forthcoming.


	Introduction
	Overview
	Contact geometry

	Contact TQFT
	``Inner product'' on chord diagrams
	Bypass surgery
	Contact QFT = Quantum pawn dynamics
	Quantum pawn dynamics

	Strings, holomorphic curves, beyond
	Stringy interpretation
	Holomorphic invariants


