Internal Time and Quantum Action Principle in Relativistic Quantum Mechanics

Inna Lukyanenko, UQ Alexander Lukyanenko, St. Petersburg State Polytechnical University

December 3, 2012

Outline	Canonical Quantization	Internal Time	QAP	Conclusions

Outline

- canonical quantization procedure
- new approach based on an internal time parameter and quantum action principle
- allows a probabilistic interpretation
- non-relativistic limit of the theory

Non-relativistic particle in \mathbb{R}^3

Coordinate representation in the state space $L^2(\mathbb{R}^3)$:

$$\begin{cases} \hat{x}_{j}\psi(x) = x_{j}\psi(x), \\ \hat{p}_{j}\psi(x) = \frac{\hbar}{i}\frac{\partial}{\partial x_{j}}\psi(x). \end{cases}$$

The dynamics is governed by the Schrödinger equation

$$i\hbar rac{\partial \psi(x,t)}{\partial t} = -rac{\hbar^2}{2m} \Delta \psi(x,t) + V(x)\psi(x,t).$$

Non-relativistic particle in \mathbb{R}^3

Coordinate representation in the state space $L^2(\mathbb{R}^3)$:

$$\begin{cases} \hat{x}_{j}\psi(x) = x_{j}\psi(x), \\ \hat{p}_{j}\psi(x) = \frac{\hbar}{i}\frac{\partial}{\partial x_{j}}\psi(x). \end{cases}$$

The dynamics is governed by the Schrödinger equation

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi(x,t) + V(x)\psi(x,t).$$

Max Born: $|\psi(x, t)|^2$ can be considered as the probability density for a particle to be located at point x at time t.

$$rac{\partial |\psi|^2}{\partial t} + {
m div} {f j} = 0, \ {
m where} \ \ {f j} = rac{i\hbar}{2m} (\psi
abla ar \psi - ar \psi
abla \psi).$$

Non-relativistic particle in \mathbb{R}^3

Coordinate representation in the state space $L^2(\mathbb{R}^3)$:

$$\begin{cases} \hat{x}_{j}\psi(x) = x_{j}\psi(x), \\ \hat{p}_{j}\psi(x) = \frac{\hbar}{i}\frac{\partial}{\partial x_{j}}\psi(x). \end{cases}$$

The dynamics is governed by the Schrödinger equation

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi(x,t) + V(x)\psi(x,t).$$

Max Born: $|\psi(x, t)|^2$ can be considered as the probability density for a particle to be located at point x at time t.

$$rac{\partial |\psi|^2}{\partial t} + {
m div} {f j} = 0, \ {
m where} \ \ {f j} = rac{i\hbar}{2m} (\psi
abla ar \psi - ar \psi
abla \psi).$$

But: this equation is not symmetric in t and x!

3 / 13

Coordinates $x^{\mu} \equiv (ct, x^1, x^2, x^3)$ in the Minkowsky space $\mathbb{R}^{1,3}$. Minkowsky metric: $\eta_{\mu\nu} = diag(1, -1, -1, -1); \ \mu, \nu = 0, 1, 2, 3$. Action Integral on a world line $x^{\mu}(\tau), \ \tau \in [0, 1]$:

$$\mathcal{I}[x(au)] = \int_0^1 L(x,\dot{x}) d au = -mc \int_0^1 \sqrt{\dot{x}^2} d au, \ \dot{x}^2 \equiv \eta_{\mu
u} \dot{x}^\mu \dot{x}^
u$$

Lagrangian: $L(x, \dot{x}) = -mc\sqrt{\dot{x}^2}$

Coordinates $x^{\mu} \equiv (ct, x^1, x^2, x^3)$ in the Minkowsky space $\mathbb{R}^{1,3}$. Minkowsky metric: $\eta_{\mu\nu} = diag(1, -1, -1, -1); \ \mu, \nu = 0, 1, 2, 3$. Action Integral on a world line $x^{\mu}(\tau), \ \tau \in [0, 1]$:

$$\mathcal{I}[x(\tau)] = \int_0^1 L(x,\dot{x}) d\tau = -mc \int_0^1 \sqrt{\dot{x}^2} d\tau, \quad \dot{x}^2 \equiv \eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$$

Lagrangian: $L(x, \dot{x}) = -mc\sqrt{\dot{x}^2} \Rightarrow p_{\mu} \equiv \frac{\partial L(x, \dot{x})}{\partial \dot{x}^{\mu}} = -mc\frac{\dot{x}_{\mu}}{\sqrt{\dot{x}^2}}.$

Coordinates $x^{\mu} \equiv (ct, x^1, x^2, x^3)$ in the Minkowsky space $\mathbb{R}^{1,3}$. Minkowsky metric: $\eta_{\mu\nu} = diag(1, -1, -1, -1); \ \mu, \nu = 0, 1, 2, 3$. Action Integral on a world line $x^{\mu}(\tau), \ \tau \in [0, 1]$:

$$\mathcal{I}[x(\tau)] = \int_0^1 L(x,\dot{x})d\tau = -mc \int_0^1 \sqrt{\dot{x}^2}d\tau, \quad \dot{x}^2 \equiv \eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$$

Lagrangian: $L(x, \dot{x}) = -mc\sqrt{\dot{x}^2} \Rightarrow p_{\mu} \equiv \frac{\partial L(x, \dot{x})}{\partial \dot{x}^{\mu}} = -mc\frac{\dot{x}_{\mu}}{\sqrt{\dot{x}^2}}.$ Hamiltonian: $H(x, p) \equiv (p_{\mu}\dot{x}^{\mu} - L(x, \dot{x}))|_{\dot{x}=\dot{x}(x,p)} = 0!$

Coordinates $x^{\mu} \equiv (ct, x^1, x^2, x^3)$ in the Minkowsky space $\mathbb{R}^{1,3}$. Minkowsky metric: $\eta_{\mu\nu} = diag(1, -1, -1, -1); \ \mu, \nu = 0, 1, 2, 3$. Action Integral on a world line $x^{\mu}(\tau), \ \tau \in [0, 1]$:

$$\mathcal{I}[x(\tau)] = \int_0^1 L(x,\dot{x})d\tau = -mc \int_0^1 \sqrt{\dot{x}^2}d\tau, \quad \dot{x}^2 \equiv \eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$$

Lagrangian: $L(x, \dot{x}) = -mc\sqrt{\dot{x}^2} \Rightarrow p_{\mu} \equiv \frac{\partial L(x, \dot{x})}{\partial \dot{x}^{\mu}} = -mc\frac{\dot{x}_{\mu}}{\sqrt{\dot{x}^2}}$. **Hamiltonian:** $H(x, p) \equiv (p_{\mu}\dot{x}^{\mu} - L(x, \dot{x}))|_{\dot{x}=\dot{x}(x,p)} = 0!$ Instead we get a **constraint** for the canonical variables:

$$H\equiv p_{\mu}p^{\mu}-m^{2}c^{2}=0$$

Canonical form of the action (method of Lagrange multipliers):

$$\mathcal{I}[x,p] = \int_0^1 (p_\mu \dot{x}^\mu - NH) d au$$

Constraint operator: $\hat{H} \equiv H(\hat{x}, \hat{p}) = -\hbar^2 \nabla_\mu \nabla^\mu - m^2 c^2$, where $\nabla_\mu \nabla^\mu \psi = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \Delta \psi$ is the **D'Alembert operator**.

Constraint operator: $\hat{H} \equiv H(\hat{x}, \hat{p}) = -\hbar^2 \nabla_\mu \nabla^\mu - m^2 c^2$, where $\nabla_\mu \nabla^\mu \psi = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \Delta \psi$ is the **D'Alembert operator**.

Relativistic Schrödinger equation: $i\hbar \frac{\partial \psi(\tau, x^{\mu})}{\partial \tau} = N \widehat{H} \psi(\tau, x^{\mu}).$ **But:** Problem with time!

Constraint operator: $\hat{H} \equiv H(\hat{x}, \hat{p}) = -\hbar^2 \nabla_\mu \nabla^\mu - m^2 c^2$, where $\nabla_\mu \nabla^\mu \psi = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \Delta \psi$ is the **D'Alembert operator**.

Relativistic Schrödinger equation: $i\hbar \frac{\partial \psi(\tau, x^{\mu})}{\partial \tau} = N \widehat{H} \psi(\tau, x^{\mu}).$

But: Problem with time!

Klein-Gordon equation

$$\mathbf{n}\left[\left(\hbar^2\nabla_{\mu}\nabla^{\mu}+m^2c^2\right)\psi=0\right] \text{ and } \frac{\partial\psi}{\partial\tau}=0.$$

Constraint operator: $\hat{H} \equiv H(\hat{x}, \hat{p}) = -\hbar^2 \nabla_\mu \nabla^\mu - m^2 c^2$, where $\nabla_\mu \nabla^\mu \psi = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \Delta \psi$ is the **D'Alembert operator**.

Relativistic Schrödinger equation: $i\hbar \frac{\partial \psi(\tau, x^{\mu})}{\partial \tau} = N\widehat{H}\psi(\tau, x^{\mu}).$ **But:** Problem with time! **Klein-Gordon equation** $\left[(\hbar^2 \nabla_{\mu} \nabla^{\mu} + m^2 c^2)\psi = 0\right]$ and $\frac{\partial \psi}{\partial \tau} = 0.$

It is relativistic, but there is **no probabilistic interpretation**:

Relativistic Schrödinger Equation

V. Fock: introduce an **internal time** parameter $s \in [0, C]$, where $C = \int_0^1 N(\tau) d\tau$, and write a **relativistic Schrödinger eq. (RSE)**:

$$i\hbar rac{\partial \psi(s,x^{\mu})}{\partial s} = \widehat{H}\psi(s,x^{\mu})$$

Canonical action: $\mathcal{I}[x,p] = \int_0^C (p_\mu \dot{x}^\mu - H) ds, \ ds = N(\tau) d\tau$

Relativistic Schrödinger Equation

V. Fock: introduce an **internal time** parameter $s \in [0, C]$, where $C = \int_0^1 N(\tau) d\tau$, and write a **relativistic Schrödinger eq. (RSE)**:

$$i\hbar rac{\partial \psi(s,x^{\mu})}{\partial s} = \widehat{H}\psi(s,x^{\mu})$$

Canonical action: $\mathcal{I}[x,p] = \int_0^C (p_\mu \dot{x}^\mu - H) ds, \ ds = N(\tau) d\tau$

Probabilistic interpretation: RSE implies conservation of the positive definite measure $|\psi(s, x^{\mu})|^2$ in the Minkowsky space. **But:** what to do with the parameter *s*?

Relativistic Schrödinger Equation

V. Fock: introduce an **internal time** parameter $s \in [0, C]$, where $C = \int_0^1 N(\tau) d\tau$, and write a **relativistic Schrödinger eq. (RSE)**:

$$i\hbar rac{\partial \psi(s,x^{\mu})}{\partial s} = \widehat{H}\psi(s,x^{\mu})$$

Canonical action: $\mathcal{I}[x,p] = \int_0^C (p_\mu \dot{x}^\mu - H) ds, \ ds = N(\tau) d\tau$

Probabilistic interpretation: RSE implies conservation of the positive definite measure $|\psi(s, x^{\mu})|^2$ in the Minkowsky space. **But:** what to do with the parameter *s*?

Our proposal: to connect $s \in [0, C]$ with a certain experiment (s = 0 is the beginning, s = C the end of experiment).

Outline	Canonical Quantization	Internal Time	QAP	Conclusions
Experi	ment			

A particle is emitted somewhere in a space-time domain $\Omega_0 \subset \mathbb{R}^{1,3}$. Let $\psi_0(x^{\mu}) \equiv \psi(0, x^{\mu})$ be the **initial state** of the particle, s.t.

$$\int\limits_{\Omega_0} |\psi_0(x^\mu)|^2 d^4 x^\mu <\infty.$$

Outline	Canonical Quantization	Internal Time	QAP	Conclusions
Experin	ment			

A particle is emitted somewhere in a space-time domain $\Omega_0 \subset \mathbb{R}^{1,3}$. Let $\psi_0(x^{\mu}) \equiv \psi(0, x^{\mu})$ be the **initial state** of the particle, s.t.

$$\int\limits_{\Omega_0} |\psi_0(x^\mu)|^2 d^4 x^\mu < \infty.$$

Let the state develop according to **RSE** up to the moment s = C, when the particle is detected: $\psi_0(x^{\mu}) \rightarrow \psi(C, x^{\mu})$.

Then $|\psi(C, x_1^{\mu})|^2$ can be interpreted as the **probability density** to detect the particle near the space-time point x_1^{μ} .

Outline	Canonical Quantization	Internal Time	QAP	Conclusions
Experin	ment			

A particle is emitted somewhere in a space-time domain $\Omega_0 \subset \mathbb{R}^{1,3}$. Let $\psi_0(x^{\mu}) \equiv \psi(0, x^{\mu})$ be the **initial state** of the particle, s.t.

$$\int\limits_{\Omega_0} |\psi_0(x^\mu)|^2 d^4 x^\mu < \infty.$$

Let the state develop according to **RSE** up to the moment s = C, when the particle is detected: $\psi_0(x^{\mu}) \rightarrow \psi(C, x^{\mu})$.

Then $|\psi(C, x_1^{\mu})|^2$ can be interpreted as the **probability density** to detect the particle near the space-time point x_1^{μ} .

Problem: how to fix the internal time parameter C?

Quantum Action Principle

We propose a Quantum Action Principle (QAP). Let

$$\psi(\mathcal{C}, x_1^{\mu}) = R(\mathcal{C}, x_1^{\mu}) \exp\left[\frac{i}{\hbar}S(\mathcal{C}, x_1^{\mu})\right].$$

Quantum Action Principle

We propose a Quantum Action Principle (QAP). Let

$$\psi(\mathcal{C}, x_1^{\mu}) = \mathcal{R}(\mathcal{C}, x_1^{\mu}) \exp\left[\frac{i}{\hbar} \mathcal{S}(\mathcal{C}, x_1^{\mu})\right].$$

Fact. The phase function $S(C, x_1^{\mu})$ in the quasi-classical limit gives the classical action of a particle.

Quantum Action Principle

We propose a Quantum Action Principle (QAP). Let

$$\psi(\mathcal{C}, x_1^{\mu}) = \mathcal{R}(\mathcal{C}, x_1^{\mu}) \exp\left[\frac{i}{\hbar}S(\mathcal{C}, x_1^{\mu})\right].$$

Fact. The phase function $S(C, x_1^{\mu})$ in the quasi-classical limit gives the classical action of a particle.

We will take it as a **quantum action**. The **stationarity condition** of the quantum action:

$$\frac{\partial S(C, x_1)}{\partial C} = 0$$

A stationary solution C_{ext} of QAP will be a function of the end point x_1^{μ} and of the initial state $\psi_0(x^{\mu})$ of the particle.

$$C_{ext} = C_{ext}(x_1^{\mu})$$

Outline	Canonical Quantization	Internal Time	QAP	Conclusions

Picture

Probabilistic Interpretation

Substituting $C_{ext}(x_1^{\mu})$ in the solution, we obtain the **probability density** to detect the particle near the point x_1^{μ} of the Minkowsky space (time t_1 is also a stochastic parameter):

$$\rho_{ext}(x_1^{\mu}) \equiv |\psi(C_{ext}(x_1^{\mu}), x_1^{\mu})|^2.$$

Taking into account all possible outcomes of the experiment we get a function $\rho_{ext}(x^{\mu})$ on the Minkowsky space.

Normalization: doesn't follow directly from RSE, must accord with the experiment. We impose a **normalization condition:**

$$\int_0^\infty \int_{\Sigma} \rho_{ext}(x^{\mu}) dx^0 d^2 \sigma = 1,$$

i.e. a particle will be detected with the probability 1.

Non-relativistic Limit

Take an initial state, where t is definite: $\psi_0(x^{\mu}) = \delta(t)\psi'_0(x^k)$. **Proposition.** In the non-relativistic limit, when the stationary value of the internal time is $C_{\text{ext}} = \frac{t}{2m}$, the solution of the RSE is

$$\psi(x^{\mu}) = \exp\left(-\frac{i}{\hbar}mc^{2}t\right)\psi'(t,x^{k}), \text{ where}$$

 $\psi'(t, x^k)$ satisfies the Schrödinger equation: $i\hbar \frac{\partial \psi'}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi'$.

Non-relativistic Limit

Take an initial state, where t is definite: $\psi_0(x^{\mu}) = \delta(t)\psi'_0(x^k)$. **Proposition.** In the non-relativistic limit, when the stationary value of the internal time is $C_{\text{ext}} = \frac{t}{2m}$, the solution of the RSE is

$$\psi(x^{\mu}) = \exp\left(-\frac{i}{\hbar}mc^{2}t\right)\psi'(t,x^{k}), \text{ where}$$

 $\psi'(t, x^k)$ satisfies the Schrödinger equation: $i\hbar \frac{\partial \psi'}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi'$.

Time t becomes a classical parameter, and the probability density

$$\varphi(t, x^k) = |\psi'(t, x^k)|^2$$

1

is the probability density of a particle to be detected in the point x^k at the moment of time t.

Conclusions and Outlook

- use of the internal time and quantum action principle for quantization of 1-particle relativistic mechanics
- allows a probabilistic interpretation and gives the proper non-relativistic limit
- Next step: application to more complicated systems (QFT, General Relativity)

Thank you for your attention!

- N. N. Gorobey, A. S. Lukyanenko, I. A. Lukyanenko, Quantum Action Principle in Relativistic Mechanics (II), arXiv:1010.3824vl [quant-ph] 19 Oct 2010.
- N. N. Gorobey, A. S. Lukyanenko, I. A. Lukyanenko, On a Probabilistic Interpretation of Relativistic Quantum Mechanics, arXiv:1012.1719vl [quant-ph] 8 Dec 2010.

e-mail: alex.lukyan@rambler.ru