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Outline

» canonical quantization procedure

> new approach based on an internal time parameter
and quantum action principle

» allows a probabilistic interpretation

» non-relativistic limit of the theory
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Canonical Quantization

Non-relativistic particle in R3
Coordinate representation in the state space L2(R3):

00 =00,
pri(x) = 5.

The dynamics is governed by the Schrodinger equation

0YP(x, t)

ih
! ot

_ _%Aw(x, t) + V(x)y(x, t).
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00 =00,
pri(x) = 5.

The dynamics is governed by the Schrodinger equation

0YP(x, t)

ih
! ot

_ _iAw(X, t) + V(x)y(x, t).

Max Born: |¢(x, t)|? can be considered as the probability density
for a particle to be located at point x at time t.
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Canonical Quantization

Non-relativistic particle in R3
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Coordinate representation in the state space L2(R3):
Kjp(x) = Xﬂb( ),
pri(x) = 5.

The dynamics is governed by the Schrodinger equation

o(x, t)
ot

2
ih _ —%Aw(x, £) + V(x)i(x, t).

Max Born: |¢(x, t)|? can be considered as the probability density
for a particle to be located at point x at time t.

2
a|¢| + divj = 0, where j= Z(WJJ—&W)-

But: this equation is not symmetric in t and x!



Canonical Quantization

Relativistic particle
Coordinates x* = (ct, x', x2, x3) in the Minkowsky space R*:3.
Minkowsky metric: 7, = diag(1,-1,—-1,-1); p,v =0,1,2,3.
Action Integral on a world line x#(7), 7 € [0, 1]:

1 1
Z[x(7)] :/0 L(x,x)dT = mc/0 \/>'<>2d7', X% = N XM XY

Lagrangian: L(x,x) = —mcVx2

4 /13



Canonical Quantization

Relativistic particle
Coordinates x* = (ct, x', x2, x3) in the Minkowsky space R*:3.
Minkowsky metric: 7, = diag(1,-1,—-1,-1); p,v =0,1,2,3.
Action Integral on a world line x#(7), 7 € [0, 1]:

1 1
Z[x(7)] :/0 L(x,x)dT = mc/0 \/>'<>2d7', X% = N XM XY

OL(x,%x) e X,

Lagrangian: L(x,x) = —mcVx2 = Pu ERT \ﬁ
X X

4 /13



Canonical Quantization

Relativistic particle
Coordinates x* = (ct, x', x2, x3) in the Minkowsky space R*:3.
Minkowsky metric: 7, = diag(1,-1,—-1,-1); p,v =0,1,2,3.
Action Integral on a world line x#(7), 7 € [0, 1]:

1 1
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OL(x,%x) fmc).(—“
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Hamiltonian: H(x, p) = (p.x* — L(x, X)) [x=x(x,p) = 0!

Lagrangian: L(x,%) = —mcVx2 = p, =

4 /13



Canonical Quantization

Relativistic particle
Coordinates x* = (ct, x', x2, x3) in the Minkowsky space R*:3.
Minkowsky metric: 7, = diag(1,-1,—-1,-1); p,v =0,1,2,3.
Action Integral on a world line x#(7), 7 € [0, 1]:

1 1
Z[x(7)] :/0 L(x,x)dT = mc/0 \/>'<>2d7', X% = N XM XY

OL(x. 5 :
Lagrangian: L(x,Xx) = —mcVXx? = p, = a(j?#X) = —mc%.
Hamiltonian: H(x, p) = (p.x* — L(x, X)) [x=x(x,p) = 0!
Instead we get a constraint for the canonical variables:

Hzp#p”—mzc2 =0

Canonical form of the action (method of Lagrange multipliers):

1
Tl = [ ("~ NH)dr
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Canonical Quantization

Canonical Quantization (Covariant Method)

Constraint operator: H = H(%, p) = —h?V,V* — mc?, where
162 :
V. Vi) = ga—tf — A is the D’Alembert operator.
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Canonical Quantization

Canonical Quantization (Covariant Method)

Constraint operator: H = H(%, p) = —h?V,V* — mc?, where
1 9?
V. Vi) = ga—tf — A is the D’Alembert operator.
a¢(77 XM) 7

Relativistic Schrodinger equation: ik

But: Problem with time! 5

Klein-Gordon equation | (7°V,V* + m*c?) ¢ = 0| and 8—¢ =0.
T

It is relativistic, but there is no probabilistic interpretation:

o = NHy(, x").

d
> |(ct,x)|? is not conserved: af v (ct, x)[2d3x # 0.

o i (00 OB 0l
> S = c <¢8t 5t obeys 9t = divj, where

j=ihc (¥Vkyp — VK. But: it is not positive definite!
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Internal Time

Relativistic Schrodinger Equation

V. Fock: introduce an internal time parameter s € [0, C], where
C= fo 7)dT, and write a relativistic Schrodinger eq. (RSE):

ih(%(g;xu) = Fi(s, x")

Canonical action: Z[x,p] = [ (p.x" — H)ds, ds= N(r)dr
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Internal Time

Relativistic Schrodinger Equation

V. Fock: introduce an internal time parameter s € [0, C], where
C= fo 7)dT, and write a relativistic Schrodinger eq. (RSE):

ih(%(;;x“) = Fi(s, x")

Canonical action: Z[x,p] = fo pux* — H)ds, ds = N(r)dr
Probabilistic interpretation: RSE implies conservation of the
positive definite measure |1(s, x*)|? in the Minkowsky space.

But: what to do with the parameter s?

Our proposal: to connect s € [0, C] with a certain experiment
(s =0 is the beginning, s = C the end of experiment).
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Internal Time

Experiment

A particle is emitted somewhere in a space-time domain Qg C R13.
Let 1o(x*) = 1(0, x*) be the initial state of the particle, s.t.

/\wo(xu)|2d4x“ < 0.
Qo
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Let 1o(x*) = 1(0, x*) be the initial state of the particle, s.t.

/\wo(xu)|2d4x“ < 0.
Qo

Let the state develop according to RSE up to the moment s = C,
when the particle is detected: 1(x*) — ¥ (C,x*).

Then ]¢(C,xf)|2 can be interpreted as the probability density to
detect the particle near the space-time point X{L.
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Internal Time

Experiment

A particle is emitted somewhere in a space-time domain Qg C R13.
Let 1o(x*) = 1(0, x*) be the initial state of the particle, s.t.

/\wo(xu)|2d4x“ < 0.
Qo

Let the state develop according to RSE up to the moment s = C,
when the particle is detected: 1(x*) — ¥ (C,x*).

Then ]¢(C,xf)|2 can be interpreted as the probability density to
detect the particle near the space-time point X{L.

Problem: how to fix the internal time parameter C?
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QAP

Quantum Action Principle
We propose a Quantum Action Principle (QAP). Let

i

HCA) = RCA ) exp | 1S(Cxt)] .
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QAP

Quantum Action Principle
We propose a Quantum Action Principle (QAP). Let
S(C,Xf)] .

!
h

Fact. The phase function S(C,x}") in the quasi-classical limit
gives the classical action of a particle.

H(C,xt) = R(C,xt') exp [

We will take it as a quantum action. The stationarity condition
of the quantum action:

85(C,x1)
oC

A stationary solution Cgy of QAP will be a function of the end
point x{" and of the initial state ¢p(x*) of the particle.

=0

Cext = Cext(X{L)
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QAP

Picture
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QAP

Probabilistic Interpretation

10 / 13

Substituting Cext(x}') in the solution, we obtain the probability
density to detect the particle near the point x;* of the Minkowsky
space (time tj is also a stochastic parameter):

pext(X{L) = |¢(Cext(xf)’xf)|2‘

Taking into account all possible outcomes of the experiment we
get a function pex(x*) on the Minkowsky space.

Normalization: doesn’t follow directly from RSE, must accord
with the experiment. We impose a normalization condition:

/ / pext(Xu)dXOdzo' =1,
0 x

i.e. a particle will be detected with the probability 1.



QAP

Non-relativistic Limit

Take an initial state, where t is definite: 1/o(x*) = &(t)h(x¥).
Proposition. In the non-relativistic limit, when the stationary

. . t . .
value of the internal time is Coxt = o the solution of the RSE is
m

P(x*) = exp (;%mczt) V'(t,x¥), where

! 2
Y/(t, x¥) satisfies the Schrédinger equation: ih%—wt = —;—mAw’.
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QAP

Non-relativistic Limit
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Take an initial state, where t is definite: 1/o(x*) = &(t)h(x¥).
Proposition. In the non-relativistic limit, when the stationary

. . t . .
value of the internal time is Coxt = o the solution of the RSE is
m

P(x*) = exp (;%mczt) V'(t,x¥), where

! 2
8¢ — 7£Aw/.
2m

Y/(t, x¥) satisfies the Schrédinger equation: ih o

Time t becomes a classical parameter, and the probability density

p(t,x") = [¢'(t,x")?

is the probability density of a particle to be detected in the point
x¥ at the moment of time t.



Conclusions

Conclusions and Outlook

» use of the internal time and quantum action principle for
quantization of 1-particle relativistic mechanics

» allows a probabilistic interpretation and gives the proper
non-relativistic limit

» Next step: application to more complicated systems (QFT,
General Relativity)
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Conclusions

Thank you for your attention!
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