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Overview

◮ The dilute O(n) loop model

◮ Discretely holomorphic observables

◮ Integrable solutions

◮ Boundary conditions

◮ Solutions for integrable boundary weights

◮ Conclusion



Dilute O(n) loop model
◮ Start with a regular, infinite lattice whose faces are rhombi

with opening angle α
◮ A configuration is a tiling of the lattice that gives a collection

of closed loops

α

u1 u2 w1 w2 v t



Dilute O(n) loop model
◮ Start with a regular, infinite lattice whose faces are rhombi

with opening angle α
◮ A configuration is a tiling of the lattice that gives a collection

of closed loops

α

u1 u2 w1 w2 v t



Partition function

Z :=
∑

G

P(G ) =
∑

G

taub1u
c

2w
d

1 w
e

2 v
f nN

where the sum is over all configurations P(G ) and the exponents
indicate the number of each type of plaquette or loop.

n = −2 cos(4λ) is the weight of a closed loop.

Limits of the model

◮ n → −2: Random Walks

◮ n → 0: Self-Avoiding Walks

◮ n → 1: Ising model



Discretely holomorphic observables

Smirnov’s parafermionic or discretely holomorphic observable:

Fs(z) =
∑

γ:−∞→z

P(γ)e−isW (γ)

◮ γ is a configuration consisting of an open path from −∞ to z

◮ W (γ) is the winding angle at z

◮ s is the parafermionic or conformal spin.



Discrete holomorphicity condition

The observable satisfies the following condition:

∑

C

Fs(zi )∆zi = 0

◮ Equivalent to a discrete form of the Cauchy-Riemann
equations

◮ Holds around an closed contour of the lattice, including
around a single face.

Cardy and Ikhlef (’09) looked at what happens if we take the
contour around a single face.



There are four disjoint sets of configurations to consider, according
to the external connectivity of the edges of the tile:

Consider the second of these



Evaluating the discrete contour integral (with x = α(s − 1)):
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This holds around an arbitrary plaquette.
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Repeating this calculation for the other three external
configurations, we obtain six linearly independent real equations.
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+ 1 = h2,1, the conformal weight of

the corresponding string operator in CFT.
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◮ Solve for the Boltzmann weights

t(x) = sin(x) sin(3λ− x) + sin(2λ) sin(3λ)

u1(x) = sin(2λ) sin(3λ− x)

u2(x) = sin(2λ) sin(x)

v(x) = sin(x) sin(3λ− x)

w1(x) = sin(2λ− x) sin(3λ− x)

w2(x) = − sin(x) sin(λ− x)



Repeating this calculation for the other three external
configurations, we obtain six linearly independent real equations.

◮ Require the determinant to vanish (otherwise the solution is
trivial)
⇒ fixes the spin s = 3λ

π
+ 1 = h2,1, the conformal weight of

the corresponding string operator in CFT.

◮ Solve for the Boltzmann weights

t(x) = sin(x) sin(3λ− x) + sin(2λ) sin(3λ)

u1(x) = sin(2λ) sin(3λ− x)

u2(x) = sin(2λ) sin(x)

v(x) = sin(x) sin(3λ− x)
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These are the Yang-Baxter integrable weights.



Boundaries
Now introduce a single boundary on the right-hand side of the
domain as well as three boundary plaquettes.
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Boundary conditions

What boundary condition should Fs(z) satisfy?

For diagonal boundaries (β3 = 0) the following condition seems to
work (Beaton et al. ’11, Ikhlef ’12):

Re

(
∑

C

F (zi )∆zi

)

= 0.

with the contour sum taken along the two edges of a boundary tile.



Diagonal boundaries

Taking the real part of the contour sum

Re[P(γ)e−is
π

2

(
e ixβ1(x)− e−ixβ2(x)

)
] = 0

we find the solutions

β1(x) = c1 sin(x +
3λ

2
), β2(x) = −c1 sin(x −

3λ

2
).

These are also solutions of the reflection Yang-Baxter equation
(Iklhef ’12, Batchelor and Yung ’95).



Diagonal boundaries

We could instead require

Im

(
∑

C

F (zi )∆zi

)

= 0

Solving the resulting linear equation gives

β1(x) = c1 cos(x +
3λ

2
), β2(x) = c1 cos(x −

3λ

2
).

Another, independent set of solutions of the reflection equation
(Batchelor and Yung ’95).



More general boundaries
Including the β3 boundary tile allows for two additional types of
loops, with weights n1, n2:

n1

n1

n2

◮ n1 (n2) loops whose upper terminal starts on the upper
(lower) edge of a β3 plaquette

◮ Additional configurations → need to modify Fs(z)



Boundary observable
The following observable is discretely holomorphic

Fs(z) =
∑

γ:−∞→z

P(γ)e−iW (γ)s qt1 q̄t2nN3
3

︸ ︷︷ ︸

boundary interactions

◮ q̄ (q), if the boundary defect has passed through a β3 tile in a
clockwise (counter-clockwise) sense (ti = 0, 1)

◮ New loop weight n3 - the open loop segment can pass
between two top or bottom edges of β3 boundary plaquettes

◮ From requiring discrete holomorphicity and also that n3 be
real we obtain the following

q = −
n1

2 cos(4λ− η)
e iη, n3 = n1

sin(4λ)

sin(2η − 8λ)

where

n = −2 cos(4λ)

and η is an arbitrary parameter.



Boundary configurations

e ixe−is
π

2 β1(x)− e−is
π

2 e−ixβ2(x)− qe−is
π

2 e−ixβ3(x)

qe ixe−is
π
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π
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π
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Requiring the first boundary condition to be satisfied

Re

(
∑

C

F (zi )∆zi

)

= 0

gives two linear equations in β1, β2 and β3.

β1(x) = n1 + n2 cos(4λ) + n3 cos(2x − λ)

β2(x) = n1 cos(2x) + n2 cos(2x − 4λ) + n3 cos(λ)

β3(x) = −2 sin(4λ) sin(2x)

where n3 =
√

n21 + n22 − nn1n2.



Alternatively, requiring the second boundary condition to be
satisfied

Im

(
∑

C

F (zi )∆zi

)

= 0

⇒

β1(x) = n1 + n2 cos(4λ)− n3 cos(2x − λ)

β2(x) = n1 cos(2x) + n2 cos(2x − 4λ)− n3 cos(λ)

β3(x) = −2 sin(4λ) sin(2x)

Both sets are solutions of the boundary Yang-Baxter equation. In
the case n2 = 1 the solutions simplify to those of the blobbed O(n)
model of Dubail, Jacobsen and Saleur (’09).



C
(1)
2 model

A parafermionic observable for the C
(1)
2 model was found by Cardy

and Ikhlef (’09). A similar observable exists when the domain
contains a boundary.

Fs(z) =
∑

γ1,γ2:−∞→z

P(γ1, γ2)e
−i(W (γ1)+W (γ2))sqt1 q̄t2nN3

3

u1 u2 w1 w2 t

β1

β2

β3

β4



Integrable weights
Diagonal boundaries plaquettes:

β1(x) = β2(x), β1(x) = −β2(x).

General boundary plaquettes:

β1(x) = n1 cos(x − 4λ− 4λ1)

β2(x) = β1(x)

β3(x) = 2 sin(4λ1) sin(x)

β4(x) = β3(x).

and

β1(x) = n1 sin(x − 4λ− 4λ1)

β2(x) = −β1(x)

β3(x) = −2 sin(4λ1) cos(x)

β4(x) = −β3(x),

where n = −2 cos(4λ), n1 = −2ρ cos(2λ1).
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solving the Yang-Baxter and boundary Yang-Baxter equations

◮ For non-diagonal boundaries, a generalisation of the
parafermionic observable is required

◮ New integrable boundary weights for the dilute O(n) and C
(1)
2

model

Possible future work

◮ Rigorous proofs of the location of critical points?
(Duminil-Copin and Smirnov ’10, Beaton et al. ’11)

◮ A better understanding of the connection between
integrability and discrete holomorphicity (Alam, Batchelor ’12,
Fendley ’12)


