Boundary conditions of discretely holomorphic observables and integrability in lattice models

Alex Lee (UniMelb) in collaboration with Jan de Gier (UniMelb) and Jorgen Rasmussen (UQ)

ANZAMP Meeting, Lorne, December 2012

#### Overview

- ▶ The dilute *O*(*n*) loop model
- Discretely holomorphic observables
- Integrable solutions
- Boundary conditions
- Solutions for integrable boundary weights

#### Conclusion

# Dilute O(n) loop model

- $\blacktriangleright$  Start with a regular, infinite lattice whose faces are rhombi with opening angle  $\alpha$
- A configuration is a tiling of the lattice that gives a collection of closed loops



# Dilute O(n) loop model

- $\blacktriangleright$  Start with a regular, infinite lattice whose faces are rhombi with opening angle  $\alpha$
- A configuration is a tiling of the lattice that gives a collection of closed loops



#### Partition function

$$Z := \sum_{G} P(G) = \sum_{G} t^a u_1^b u_2^c w_1^d w_2^e v^f n^N$$

where the sum is over all configurations P(G) and the exponents indicate the number of each type of plaquette or loop.

 $n = -2\cos(4\lambda)$  is the weight of a closed loop.

Limits of the model

- $n \rightarrow -2$ : Random Walks
- $n \rightarrow 0$ : Self-Avoiding Walks
- ▶  $n \rightarrow 1$ : Ising model

## Discretely holomorphic observables

Smirnov's parafermionic or discretely holomorphic observable:

$$F_s(z) = \sum_{\gamma: -\infty o z} P(\gamma) e^{-isW(\gamma)}$$

- $\blacktriangleright~\gamma$  is a configuration consisting of an open path from  $-\infty$  to z
- W(γ) is the winding angle at z
- ▶ *s* is the parafermionic or conformal spin.



# Discrete holomorphicity condition

The observable satisfies the following condition:

$$\sum_{C} F_{s}(z_{i}) \Delta z_{i} = 0$$

- Equivalent to a discrete form of the Cauchy-Riemann equations
- Holds around an closed contour of the lattice, including around a single face.

Cardy and Ikhlef ('09) looked at what happens if we take the contour around a single face.

There are four disjoint sets of configurations to consider, according to the external connectivity of the edges of the tile:



Consider the second of these



 $P(\gamma)(nu_2(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i\frac{\alpha}{2}s})$ 



$$P(\gamma)(nu_2(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i\frac{\alpha}{2}s} + nw_2(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s}$$



$$P(\gamma)(nu_{2}(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i\frac{\alpha}{2}s} + nw_{2}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s} + w_{1}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s}$$



$$P(\gamma)(nu_{2}(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i\frac{\alpha}{2}s} + nw_{2}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s} + w_{1}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s} - u_{1}(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i(\frac{\alpha}{2}-\pi)s}$$



$$P(\gamma)(nu_{2}(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i\frac{\alpha}{2}s} + nw_{2}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s} + w_{1}(x)e^{i\frac{\pi-\alpha}{2}}e^{i\frac{\alpha}{2}s} - u_{1}(x)e^{-i\frac{\pi-\alpha}{2}}e^{-i(\frac{\alpha}{2}-\pi)s} - v(x)e^{i\frac{\pi-\alpha}{2}}e^{-i(2\pi-\frac{\alpha}{2})s}) = 0$$

This holds around an arbitrary plaquette.

$$-inu_{2}(x)e^{-i\frac{x}{2}} + inw_{2}(x)e^{i\frac{x}{2}} + iw_{1}(x)e^{i\frac{x}{2}} +iu_{1}(x)e^{i\pi s}e^{-i\frac{x}{2}} - iv(x)e^{-i2\pi s}e^{i\frac{x}{2}} = 0$$

Require the determinant to vanish (otherwise the solution is trivial)
 ⇒ fixes the spin s = <sup>3λ</sup>/<sub>π</sub> + 1 = h<sub>2,1</sub>, the conformal weight of

the corresponding string operator in CFT.

► Require the determinant to vanish (otherwise the solution is trivial)
⇒ fixes the spin s = <sup>3λ</sup>/<sub>2</sub> + 1 = h<sub>2</sub>, the conformal weight of

 $\Rightarrow$  fixes the spin  $s = \frac{3\lambda}{\pi} + 1 = h_{2,1}$ , the conformal weight of the corresponding string operator in CFT.

Solve for the Boltzmann weights

$$t(x) = \sin(x)\sin(3\lambda - x) + \sin(2\lambda)\sin(3\lambda)$$
  

$$u_1(x) = \sin(2\lambda)\sin(3\lambda - x)$$
  

$$u_2(x) = \sin(2\lambda)\sin(x)$$
  

$$v(x) = \sin(x)\sin(3\lambda - x)$$
  

$$w_1(x) = \sin(2\lambda - x)\sin(3\lambda - x)$$
  

$$w_2(x) = -\sin(x)\sin(\lambda - x)$$

► Require the determinant to vanish (otherwise the solution is trivial)
→ fixes the spin s = <sup>3λ</sup>/<sub>2</sub> + 1 = h<sub>2</sub>, the conformal weight of

 $\Rightarrow$  fixes the spin  $s = \frac{3\lambda}{\pi} + 1 = h_{2,1}$ , the conformal weight of the corresponding string operator in CFT.

Solve for the Boltzmann weights

$$t(x) = \sin(x)\sin(3\lambda - x) + \sin(2\lambda)\sin(3\lambda)$$
  

$$u_1(x) = \sin(2\lambda)\sin(3\lambda - x)$$
  

$$u_2(x) = \sin(2\lambda)\sin(x)$$
  

$$v(x) = \sin(x)\sin(3\lambda - x)$$
  

$$w_1(x) = \sin(2\lambda - x)\sin(3\lambda - x)$$
  

$$w_2(x) = -\sin(x)\sin(\lambda - x)$$

These are the Yang-Baxter integrable weights.

#### Boundaries

Now introduce a single boundary on the right-hand side of the domain as well as three boundary plaquettes.



#### Boundary conditions

What boundary condition should  $F_s(z)$  satisfy?

For diagonal boundaries ( $\beta_3 = 0$ ) the following condition seems to work (Beaton et al. '11, Ikhlef '12):

$$Re\left(\sum_{C}F(z_i)\Delta z_i\right)=0.$$

with the contour sum taken along the two edges of a boundary tile.

#### **Diagonal boundaries**



Taking the real part of the contour sum

$$Re[P(\gamma)e^{-is\frac{\pi}{2}}\left(e^{ix}\beta_1(x)-e^{-ix}\beta_2(x)\right)]=0$$

we find the solutions

$$\beta_1(x) = c_1 \sin(x + \frac{3\lambda}{2}), \qquad \beta_2(x) = -c_1 \sin(x - \frac{3\lambda}{2}).$$

These are also solutions of the reflection Yang-Baxter equation (Iklhef '12, Batchelor and Yung '95).

#### **Diagonal boundaries**

We could instead require

$$Im\left(\sum_{C}F(z_{i})\Delta z_{i}\right)=0$$

Solving the resulting linear equation gives

$$\beta_1(x) = c_1 \cos(x + \frac{3\lambda}{2}), \qquad \beta_2(x) = c_1 \cos(x - \frac{3\lambda}{2}).$$

Another, independent set of solutions of the reflection equation (Batchelor and Yung '95).

## More general boundaries

Including the  $\beta_3$  boundary tile allows for two additional types of loops, with weights  $n_1$ ,  $n_2$ :





- n<sub>1</sub> (n<sub>2</sub>) loops whose upper terminal starts on the upper (lower) edge of a β<sub>3</sub> plaquette
- Additional configurations  $\rightarrow$  need to modify  $F_s(z)$

#### Boundary observable

The following observable is discretely holomorphic

$$F_{s}(z) = \sum_{\gamma: -\infty \to z} P(\gamma) e^{-iW(\gamma)s} \underbrace{q^{t_{1}} \bar{q}^{t_{2}} n_{3}^{N_{3}}}_{\text{boundary interactions}}$$

- *q̄* (*q*), if the boundary defect has passed through a β<sub>3</sub> tile in a clockwise (counter-clockwise) sense (t<sub>i</sub> = 0, 1)
- New loop weight n<sub>3</sub> the open loop segment can pass between two top or bottom edges of β<sub>3</sub> boundary plaquettes
- ► From requiring discrete holomorphicity and also that *n*<sub>3</sub> be real we obtain the following

$$q = -rac{n_1}{2\cos(4\lambda - \eta)}e^{i\eta}, \qquad n_3 = n_1rac{\sin(4\lambda)}{\sin(2\eta - 8\lambda)}$$

where

$$n = -2\cos(4\lambda)$$

and  $\eta$  is an arbitrary parameter.

Boundary configurations



$$e^{ix}e^{-israc{\pi}{2}}eta_1(x) - e^{-israc{\pi}{2}}e^{-ix}eta_2(x) - qe^{-israc{\pi}{2}}e^{-ix}eta_3(x)$$



 $qe^{ix}e^{-is\frac{\pi}{2}}\beta_1(x) - qe^{-is\frac{\pi}{2}}e^{-ix}\beta_2(x) - qn_2e^{-is\frac{\pi}{2}}e^{-ix}\beta_3(x)$ 

Requiring the first boundary condition to be satisfied

$$Re\left(\sum_{C}F(z_{i})\Delta z_{i}
ight)=0$$

gives two linear equations in  $\beta_1$ ,  $\beta_2$  and  $\beta_3$ .

$$\beta_1(x) = n_1 + n_2 \cos(4\lambda) + n_3 \cos(2x - \lambda) \beta_2(x) = n_1 \cos(2x) + n_2 \cos(2x - 4\lambda) + n_3 \cos(\lambda) \beta_3(x) = -2 \sin(4\lambda) \sin(2x)$$

where  $n_3 = \sqrt{n_1^2 + n_2^2 - nn_1n_2}$ .

Alternatively, requiring the second boundary condition to be satisfied

$$Im\left(\sum_{C}F(z_{i})\Delta z_{i}\right)=0$$

 $\Rightarrow$ 

$$\beta_1(x) = n_1 + n_2 \cos(4\lambda) - n_3 \cos(2x - \lambda)$$
  

$$\beta_2(x) = n_1 \cos(2x) + n_2 \cos(2x - 4\lambda) - n_3 \cos(\lambda)$$
  

$$\beta_3(x) = -2\sin(4\lambda)\sin(2x)$$

Both sets are solutions of the boundary Yang-Baxter equation. In the case  $n_2 = 1$  the solutions simplify to those of the blobbed O(n) model of Dubail, Jacobsen and Saleur ('09).

# $C_2^{(1)}$ model

A parafermionic observable for the  $C_2^{(1)}$  model was found by Cardy and Ikhlef ('09). A similar observable exists when the domain contains a boundary.

$$F_s(z) = \sum_{\gamma_1, \gamma_2: -\infty \to z} P(\gamma_1, \gamma_2) e^{-i(W(\gamma_1) + W(\gamma_2))s} q^{t_1} \bar{q}^{t_2} n_3^{N_3}$$



#### Integrable weights

Diagonal boundaries plaquettes:

$$\beta_1(x) = \beta_2(x), \qquad \beta_1(x) = -\beta_2(x).$$

General boundary plaquettes:

$$\begin{array}{rcl} \beta_1(x) &=& n_1 \cos(x - 4\lambda - 4\lambda_1) \\ \beta_2(x) &=& \beta_1(x) \\ \beta_3(x) &=& 2 \sin(4\lambda_1) \sin(x) \\ \beta_4(x) &=& \beta_3(x). \end{array}$$

and

$$\beta_1(x) = n_1 \sin(x - 4\lambda - 4\lambda_1)$$
  

$$\beta_2(x) = -\beta_1(x)$$
  

$$\beta_3(x) = -2\sin(4\lambda_1)\cos(x)$$
  

$$\beta_4(x) = -\beta_3(x),$$

where  $n = -2\cos(4\lambda), n_1 = -2\rho\cos(2\lambda_1)$ .

Summary

 Discrete holomorphicity provides an alternative route to solving the Yang-Baxter and boundary Yang-Baxter equations

Summary

- Discrete holomorphicity provides an alternative route to solving the Yang-Baxter and boundary Yang-Baxter equations
- For non-diagonal boundaries, a generalisation of the parafermionic observable is required

Summary

- Discrete holomorphicity provides an alternative route to solving the Yang-Baxter and boundary Yang-Baxter equations
- For non-diagonal boundaries, a generalisation of the parafermionic observable is required
- New integrable boundary weights for the dilute O(n) and C<sub>2</sub><sup>(1)</sup> model

Summary

- Discrete holomorphicity provides an alternative route to solving the Yang-Baxter and boundary Yang-Baxter equations
- For non-diagonal boundaries, a generalisation of the parafermionic observable is required
- New integrable boundary weights for the dilute O(n) and C<sub>2</sub><sup>(1)</sup> model

Possible future work

 Rigorous proofs of the location of critical points? (Duminil-Copin and Smirnov '10, Beaton et al. '11)

Summary

- Discrete holomorphicity provides an alternative route to solving the Yang-Baxter and boundary Yang-Baxter equations
- For non-diagonal boundaries, a generalisation of the parafermionic observable is required
- New integrable boundary weights for the dilute O(n) and C<sub>2</sub><sup>(1)</sup> model

Possible future work

- Rigorous proofs of the location of critical points? (Duminil-Copin and Smirnov '10, Beaton et al. '11)
- A better understanding of the connection between integrability and discrete holomorphicity (Alam, Batchelor '12, Fendley '12)