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What is a superintegrable system?
Higher Symmetries of the Laplacian

Extending the superintegrable TTW systems to higher
dimensions

Superintegrability suggests a non-standard conformally
covariant Laplacian
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What is a Superintegrable Systems?

Consider H, a natural Hamiltonian on a 2n-dimensional phase space

H=> g'pipj+ V(x1,....x).

ij=1
H is Liouville integrable means there are n functions of the phase space
Lo=H,Ly,... Ln_1,

that are
o functionally, independent
o globally defined,
@ Poisson commuting: {Li,L;}=0 fori=0...n—1.
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What is a Superintegrable Systems?

Consider H, a natural Hamiltonian on a 2n-dimensional phase space

H=> g'pipj+ V(x1,....x).

ij=1
H is Liouville integrable means there are n functions of the phase space
Lo=H,Ly,... Ln_1,
that are
o functionally, independent

o globally defined,
@ Poisson commuting: {Li,L;}=0 fori=0...n—1.

H is superintegrable means that H is integrable and additionally there are
further functionally independent constants up to a maximum of 2n— 1. That is,

{H,Li}=0 fori=0...2n—-2.
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What is a Superintegrable Systems?

Consider H, a natural Hamiltonian on a 2n-dimensional phase space

H=> g'pipj+ V(x1,....x).

ij=1
H is Liouville integrable means there are n functions of the phase space
Lo=H,Ly,... Ln_1,

that are
o functionally, independent
o globally defined,
@ Poisson commuting: {Li,L;}=0 fori=0...n—1.

H is superintegrable means that H is integrable and additionally there are
further functionally independent constants up to a maximum of 2n— 1. That is,
{H,Li}=0 fori=0...2n—-2.

Here consider only constants polynomial in the momenta. Eg, second order
constants:

L; = Z a{‘,f)pjpk + W(,')(Xl, . 7X,1).

Jk=1
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What is a Superintegrable Systems?

@ The trajectories can be found algebraically. They must lie on the
intersection of the level sets of the 2n — 1 constants.

@ The Kepler-Coulomb and isotropic oscillator systems are the best known
examples.

o For quantum superintegrability momenta and the Poisson brackets
replaced by differential operators and the operator commutators.

o Classical and quantum superintegrable systems typically have a Poisson or
commutator algebra that closes polynomially.

@ Superintegrable systems with all second order symmetries are
multi-separable and provide information on special functions.

@ Connections with Quasi-Exactly-Solvable systems.
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Example: Tremblay, Turbiner and Winternitz (TTW) with k =1

The Hamiltonian
H:pf+P§+a(X2+y2)+:%+ =%
has two constants that are second order polynomials in the momenta
L1:pf+ax2+g, Lz:(xpy*ypx)erﬂngw;-
{H,L1} = {H, L} = 0.
With R = {Li, Lo} the Poisson algebra closes quadratically.
{R, L1}

{Rv L2}
R2

813 — 8HL; + 16als,

—16L1Lo + 8HLs — 16(3 + v)L1 + 16HB,

—16L3L> + 16HL1L> — 163 — 16(53 + ~)L3 + 328HL:
—168H? + 16a8~.
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Further examples of superintegrable systems

Some examples...

@ Oscillators with rational frequency ratios

1 w
H=2(p%+py) +wix® +uiy®, w—: €Q

o Calogero-Moser (Wojciechovski, 1983)
T
24 Pi L (x; — xj)?
i=1 i<j=1

@ Toda lattice (Agrotis, Damianou, Sophocleous, 2005)

n n—1
M= g e e
i=1 i=1

@ A non-separable system (Post and Winternitz, 2011)

1 2 ay
H:§(px+py)+ﬁ
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Higher Symmetries of the Laplacian

Homogeneous polynomials in the momenta correspond to symmetric
contravariant tensors.

If Ho and Lo are the leading terms of H and L as polynomials in the momenta,
then
{H07L0}:0 <~ [g7K]:0

where [, ] is the Schouten bracket and
0 0

i O 0
=gl 2 o = d K = g )
€ £ 8X,' © 8Xj an a 8X,'1 © © 8X,'r

K is a second rank (symmetric) Killing tensor.

The leading terms (symbol) of a differential operator symmetry of the
(conformal) Laplacian is a (conformal) Killing tensor.

Do all (conformal) Killing tensors correspond to a symmetry of the (conformal)
Laplacian?
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Tremblay-Turbiner-Winternitz (TTW) system

Tremblay, Turbiner and Winternitz (2009) introduced a family of potentials

B Y

Vrrw = ar? :
TTW = ar 45 cos2(k0) th sin?(k6)

For k = 1,2, 3 these were known systems (Smorodinsky-Winternitz, rational
B(C> model, Wolfes model).

For all k € NT, Tremblay, Turbiner and Winternitz

@ showed that the quantum systems are exactly solvable and the classical
systems have closed trajectories.

o demonstrated superintegrability for k = 1,2, 3, 4.

@ conjectured superintegrability for rational k.
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Tremblay-Turbiner-Winternitz (TTW) system

The classical and quantum TTW systems are superintegrable for all positive
rational parameter values (KMP 2009, KKM 2010).

These results have been extended to other families, eg

_ 2 2 2 « B i
H = cosh™ 4 (p¢ TPt o ko + sin? ko + sinh2w> '

The methods used allow explicit calculation of the symmetry algebra which
closes polynomially.

In the following | will describe some extensions to higher dimensions.
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Generalized TTW

The classical TTW Hamiltonian for kK = 1 can be written in Cartesian
coordinates as

b1 52

Hrrw = p + py + o(x* + y*) + =
x? )/
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Generalized TTW

The classical TTW Hamiltonian for kK = 1 can be written in Cartesian
coordinates as

HTTw:pf+p§+a(X2+y2)+X—2 )

/31+5%

and in polar coordinates as

1 B B2
H _ 2 2 12
TTW = py +ar” + 2 (pe + 0520 T G20
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Generalized TTW

The classical TTW Hamiltonian for kK = 1 can be written in Cartesian
coordinates as

HTTW:p§+p§+a(x2+y2)+fz 52
and in polar coordinates as
1 B1 B2
H _ 2 2 L [ 2
TTW = py +ar” + 2 (pe + 0520 T G20

A natural generalization to 3 dimensions is

H=pitp)+pitol+y* +2°)+ 5 +&+ﬂ3
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Generalized TTW

The classical TTW Hamiltonian for kK = 1 can be written in Cartesian
coordinates as

HTTW:p§+p§+a(x2+y2)+fz 52
and in polar coordinates as
1 B1 B2
H _ 2 2 L [ 2
TTW = py +ar” + 2 (pe + 0520 T G20

A natural generalization to 3 dimensions is

H=pitp)+pitol+y* +2°)+ 5 +&+ﬂ3

or in polar coordinates,

1 1
H:p3+ar2+r—2<p§1+ LN <p§2+ By I ))

cos26;  sin?6; cos2fy = sin? 6,

This pattern will continue in higher dimensions.
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Generalized TTW

The classical TTW Hamiltonian for arbitrary k is written in polar coordinates as

2 2, 1 (5 B B2
Hrrw = p; +ar” + 5 (Pg * cos?(k0) + sin(k6)

and so we generalize this as

B 1 2 B2 Ba
cos2(kif1) | sinZ(ks6r) (”"2 t o2 (kats) T sinz(k202)>>

and so on to higher dimensions.

1
H=pi+ar’+— <p51 +

Inside each pair of brackets is a constant of the motion.

Such systems are superintegrable.
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Four-dimensional TTW

We now consider a 4-dimensional generalization of the TTW system.

H=1L

L,

Ls

Ly

P +ar’ + %

Po, + Cosz?[ilal) sinzé_lil@l)
Ph, + coszfzzez) sinz(LZzeZ)
P§3 + cos2fZ393) sinz(ﬂ/js%).

This system is superintegrable for all positive rational ki, k> and k3.
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Four-dimensional TTW

The corresponding metric
g=eQet+eaet+eade+edes,
€ = df, €1 — rdc91, € — rsin(k191)d€2, €3 = rsin(k191)sin(k292)d93.

is not conformally flat since

w. b dWabcd — 4(k12 — k22)2
ave 3r4 sin4(k101).

Wibed is the Weyl conformal curvature tensor.
The metric g is conformally flat if and only if kZ = k2.

Next, illustrate the superintegrability with k1 = 2, ko = k3 = 1. The general
case is similar.
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Four-dimensional TTW (ki, ko, ks = 2,1,1)

As an example, with ki, k2, ks = 2,1, 1, we find two additional quartic and a
cubic constant of the motion

L/I/ = (H — %) 75|n(401)P91Pr
r r
+ 2(Lz Cos(wig th=f) p; — %(H2 — alz) cos(461),
Ly = 2(Lscos(202) + Ly — B2) cot(201) sin(202) pe, Po,

+ ((B2 — Ls — La)* — 4L3La)cosec®(261)

— sin?(262)(2L3cosec’(201) + Br — L» — L3)pi,
2(La cos(203) + Ba — B3) cot(62)pg,

— (2Lscosec®(02) 4+ Ba — Lz — Lg)sin(203)py,

"
L3

Setting o = 31 = 2 = B3 = 0 gives higher rank Killing tensors independent of
the rank 2 Killing tensors.
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Four-dimensional Quantum TTW

The quantum version has four mutually commuting differential operators,

H = 83+§8,7w2r2+l_—21
r r
Ly = 02, + 2k cot(kif1)de, + b L
! cos?(kibh) = sin®(ki61)
B2 Ls
Lo = 0f, + kacot(kat2)O
2 b2 + ke cot(ke02)da + cos?(k262) * sin(k202)
L. — &2 B3 Ba
3 b T cos?(ks03) * sin?(ksf3)

The Hamiltonian is of the form H = V2 + V, where V2 is the Laplacian on a
four-dimensional manifold with metric

g=eQet+eaa®@et+eade+edes,
e =dr, e =rdby, e =rsin(kib1)df2, ez = rsin(kif1)sin(k262)d0s.
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Four-dimensional Quantum TTW

The equation HV = EV is separable in the coordinates r, 61, 62, 63 but for
reasons that will be ‘explained’, we add some extra terms.

_ L2
H=lo = 0+ 20, -wtrhs2 1ok
r r r
Lo k? — k2

Li = 83, + 2k cot(kif:1)d B TR
1 9, + 2k1 cot(ki61) 61+cosz(k101) +sin2(k191) +4sin2(k191)

B2 L3
L, = 3, + ko cot(ka02)0,
2 0 + e cotlka2) 0 + S0 Gt Gt (kat)

B3 Ba

s = &
3 b+ cos?(ksb3) + sin?(ks03)

HW = EV remains separable with the additional terms.
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Four-dimensional Quantum TTW

For the metric g, the scalar curvature is

6 ,,2(6 2 2k3
R=-—— - =
2Tl (r2 r2 sinz(k101)) - r2sin®(ki61)’

and with Weyl conformal tensor W.pq, if we define

2(k — Kk3)

3W,peq Wabed = :
bed I’2 sin2(k191)

then 1 )
H = V2 — R — =W,
Ve + W 6R 24W

The metric g is conformally flat if and only if k# = k3.
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Four-dimensional Quantum TTW

We look for solutions of the form
HVY = E\U, V= \Uo(r)\lll(Ql)\llg(Gg)\ll3(93),
and

L3W; = l3V3, LoWoWs = LW, Vs, LV WoWs = (W W, Vs,
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Four-dimensional Quantum TTW

We look for solutions of the form
V= Wo(r)V:(61)V2(02)V3(63),

HV = Ev,
LiViWoWs = (W, W, U5,

and
LVoV3 = LW, W3,

L3Ws = {53,

For the angular equations we will find the equation
1 2
+(2n+a+ﬂ+1)2> u=0

2 = —

1
3 — @ 4

1"
u +
< sin?y cos?y

which has solution

where P{*#)(x) is a Jacobi function.
Jonathan Kress Non-conformally-flat Superintegrability
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Four-dimensional Quantum TTW

With the replacements

1 1
=k (G-). m=k(j-4).

the separated 65 equation is

LaW(63) = W (05) + (kg (G-di)  hs (5 ag)> W3(63) = £ W5 (05)

COSZ(k393) + sinz(k393)
which has solutions
W32 (05) = (sin(ksf3))™ 2 (cos(ksf3))™ > P2 (cos(2ksb3))

and eigenvalues

L3\Ua3’a4(93) = 53\”33’34(63), {3 = —k§(2n3 + a3+ as + 1)2

3,n3 3,n3
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Four-dimensional Quantum TTW

The separated 6, equation L W2(602) = £2W2(62) is

B2 n l3
cos?(ka02)  sin®(ka02)

\Ug(ez) + ko COt(kzez)\UlQ(ez) + ( ) \Uz(eg) = fz\Uz(ez)

which we transform with
Wy (62) = (sin(ka02)) ™ 2405(65)
to absorb the first derivative term to give

" 62 £3 + %kzz 1 2
(7 —ky — ¢ 0,) =
W2 (02) + <c052(k292) N sin?(kz262) * 42 2 | ¥2(62) =0

and we make the replacements
1 1 1
=k (3-d),  erd-k(3-4)

k
l3 = —k§(2n3 + a3 +a4+1)2 = A= f(Qns +az+as+1)
2
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Four-dimensional Quantum TTW

The separated 0> equation becomes

o (BG-d) KBE-A)  u )
¢2(92)+<C052(k292) Sinz(kgﬁz) +—= —4l2 | ¢2(62) =0

4

where )
k
f — ¥l = k§(2n2 +ax+ Az + 1)2

and has solution

w4222 (0) = (sin(ka02))** (cos(kaf2))™ 2 P22 ) (cos(2ka0)).

2,n2
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Four-dimensional Quantum TTW

The separated 01 equation L1Wy(01) = ¢1W1(01) is

B1 b2 + %(k%—k%)
cos?(k161) sin?(ky01)

\IJ'1’(91)+2k1 COt(klel)\Ull(el)+< ) \IJ1(91) = 41\“1(61),

which we transform with

W1(601) = (sin(kif1)) 1p(61)

to absorb the first order term to give

" ﬁl 62 + %(k% - k%) 2 _
v (0:) + <cosz(klel) + sin?(k10:) ki =) vi(6) =0

and we make the replacements

1 1 1
ﬁlzkf(z—a%), b+ (K k) = K (Z—Ai).
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Four-dimensional Quantum TTW

On the last slide we had
b+ = (k2 k3) = ki (1 - Ai)

which along with
k2
Z —ly=k3(2ny +ay + Ay +1)°

gives

k
AL = f(an + A+ ax+1).
1

Without the ; (ki — k3) term, we would have had

k2 k2
Al = 4 <1—P) k2(2n2+22 +A2+1)2
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Four-dimensional Quantum TTW

The separate 0; equation becomes

BG-2) KG-A)
2 1 \2 1 1 \2 1 2 _
Doy ¥1(62) + ( cos?(k161) * sin?(k161) Fhi=b ) ua0) =0

where
ki — 61 =ki(2n + Ay +a1 +1)%

and has solutions

WL (01) = (sin(kif1))* % (cos(knr))™ 2 P11 (cos(2k1 1))

1,n
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Four-dimensional Quantum TTW

Finally, the separated radial equation is

k2
HWo(r) = 6 Wo(r) + 20,Wo(r) + (*wzrz 4 ‘“';7;“) Wo(r) = EWo(r).

We remove the first order terms with the transformation

Wo(r) = r~ 3 ¢o(r)

to give
1 ki+¢
Fia(r) + (w + A E () =0
Now,
1_p2
u”(x) + (—x2+ 4x2 o —|—4n+2Ao—|—2> u(x)=0
has solution

u(x) = eféxA”% LS,A°)(X2)7

where L) (x) is a Laguerre function.
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Four-dimensional Quantum TTW

We needed
A=k -0

and we already have
k2 — 0 = k2(2n1 + Ay +ag + 1)

kle]

Lu'rz
v (r)=e "z rA°71LE,'2°)(wr2)

0,no

where L7(x) is a Laguerre function and

Ao = k1(2n1+81+A1 4’1)7 E = —UJ(4I‘I0+2A0—|—2).

Jonathan Kress Non-conformally-flat Superintegrability



Four-dimensional Quantum TTW

Now, putting these together

E = —w(4no + 2A0 + 2)

Ao = ki(2m+Ai+a1+1)
k

A = k—2(2n2+A2+32+1)
1
ks

A = F(2n3+23+a4+1)
2

we find
E = —2w(2n0—|—2k1n1+2k2n2—|—2k3n3+k1a1+k2a2+k3a3—|—k3a4—|—k1—|—k2+k3+1)
for a solution of the form

()WL (0) V532 (02) V5,2 (05)

v =wge
no,ni,n2,n3 — 1,m ,na 3,n3

0,no

Our aim is to use special function identities to raise and lower the n; while
preserving E and produce new operators commuting with H.
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Raising and lowering operators for TTW solutions

Some examples...

1— A2
r2
1— A2

r2

1-A
Koo — 29, + (2n0 + Ao + 1)w +
0 ng r

_ 1+A
Koo = 2529 1 (20 + Ao+ 1w+
° r

These raise and lower ng and Ag simultaneously.
Komowpo = —2(no +1)(no + Ao)Wili{

ng+1
— AoyrAo _ 2.11A0+2
KO no ‘Uﬂo - —2(4.) \Ilnofl
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Raising and lowering operators for TTW solutions

For the angular functions, we can use Jacobi function identities to make
operators that raise and lower n alone.

yo= —w&;—7((N+1)(N+1—c—d)cos(2k6)
— (N +1)(c — d) + a2 —bz)
Jo = w&;—%((N—l)(N—l+c+d)cos(2k9)

+(N—1)(c—d)+az—b2)
N=2n+a+b+1, O = sin®"¢ (k) cos® ¥ (k0) PS*? cos(2k6)

Jielh  — (n—|—1)(n+a+b+1)@n+1)
Jye = —2(n+a)(n+ b)0=Y
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Raising and lowering operators for TTW solutions

We can also use Jacobi function identities to make operators that raise and
lower n and a simultaneously.

Ki® = f%zisa()ka)ag72(n(n+a+b+1)+a(a+b))
—(1—a)(a+c+b+d)—%((kaegc)

(+a)costka),

K,? = 2n(n+a+b+1)

ksin(k0)
1
_(1+a)(a+c+b+d)+%
Again, for
elb) — sin®*¢(k0) cosb”(k@)P,(,a’b) cos(2k0)

we have

K20 = 2(n+1)(n+ a0l "

K720@® = 2(nta+t b+ 1)(nt b)oE 2
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Raising and lowering operators for TTW solutions

For ki = p1/q1 with ged(p1, g1) = 1 the operator

—+ __ je—Ao+2(p1—1) — Ao+ +
—01 — Mong—(p1—1) "'Kono J1n1+q1*1"'J1"1
[

p1 terms g1 terms
which has the effect on a basis function of
ng — ng—p1, N1 — ni+qi, Ao— Ag+2p1.
and so
E = —2w(2no + 2kiny + -+ ) = —2w(2(no — p1) + 2ki(n1 + q1) +--)
= —2w(2no 4+ 2kyny + - - ),

that is, E is unchanged. A similar lowering operator is

=— _ ptAo—2(p1—1) +Ao — —
—01 = ‘0 ng+(p1—1) ”'KOno Jlnlf(qlfl)'”‘jlnl .
p1 terms q1 terms

This is exactly like the original TTW.
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Raising and lowering operators for TTW solutions

For ka/ki = p2/q= with gcd(p2, g2) = 1 the operator

=+ __ je—A1+2(p2-1) — Ay 1+ +
—12 — K1"1*(P2*1) "'K1n1 J2n2+q271 "'J2n2
|
p2 terms g2 terms

which has the effect on a basis function of
ng—m—p2, nN2—n+qg, A1 — Ai1+2p.
and so
E = —2w(2no+2kini+2kona+- -+ ) = —2w(2n0+2ki(n1—p2)+2ka(n2+q2)+- - -)

= —2w(2no + 2kyiny + 2konz + - -+ ),
that is, E is unchanged. A similar lowering operator is

—— _ petA1—-2(p2-1) +AL - —
—12 7 Mg +(p2—-1) K1"1 Jznzf(qul) J2"2‘

p2 terms q> terms

The K operators differ from the 2D TTW procedure.
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Additional symmetries of generalized TTW

The transformation ny — —n1 — A1 — a1 — 1 while holding E constant has the
effect of changing the sign of Ao.

Can check that

=+ =
+ _ =+ - — _ =01 —01
Loy = =01 + =01 and Loy = A

are polynomials in E, A3 and A2. Since

12y
A3 =ki -t and AZ:%
1

we can replace E, A3 and A? with a second order differential operators where
ever they appear in these expressions.

E.g. for ky, ko, ks = 2,1,1 these are operators that commute with H of orders 5
and 6 that are algebraically independent of the second order operators.
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Additional symmetries of generalized TTW

For the case ki, ko, ks =2,1,1, L{; is a 5t order operator.

L = ( 2o+ 6 ) AAZ 4 (7cos(401)ar n Sin(491)89 n 1+5cos(401)) Ad

2r3 4r4 : 2r4
1 2 sin(461) cos(401) 1\
—=0 + = ) EAL? ) - )E
+(rr+r2) 1+( 16 o, + n +8
cos(46 sin(40 3cos(461) +1 6
+(7 (#01) 5, . sin 1)691+ (461) )EA02+(7—8+ 627—)A2
4r 4r? 2r? ré
(sm(401)ar8 3cos(491)+2fa1 5, — 55|n(4491)ao1 B (6cos(491)+574a1)> £
r r 4r2 2r2
sin(4601) ., 13sin(460;1) (4cos(401) +1) ., 13+ 27cos(40;) — 422
+ (‘ a2 Or0n T T 00 = e 2 o
5sin(461) 25 cos(461) + 20 — 12a2 5
— 2 891 — AO
r 2r4
11sin(461) .5 (11 —8a% + 14 cos(461)) ., 23sin(461) , ,
Tz ot 22 O~ s O
~ 26cos(461) + 23 — 20a 5 2L sm(401) ~ 3(10cos(461) +7 — 4a3)
2r3 ’ 4r4 s 2r4
with the replacements E — H, A2 — k¥ — Ly, A2 — (k2 —4L2)/(4Kk3).
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The symmetry algebra

We find some polynomially closed subalgebras. For i = 1,2, 3, define two
differential operators polynomial in their arguments,
== 4+ ==
POLi 1, L, A2) =757 +5F 27 and PU(Lioy, Liy A) = ki S
i—1

For each for i = 1,2, 3 we find,

[Li, L[] = —4kiqiL; —4aikPqiL]
(Li, 1] = 2qi{Li,Li } — 4Kl qil] +4kPaiL; +8a kP L;
(L7 = 2qi(Li)* = 2P (Lio, Li, A7)

and with oy =1, ao =1/4 and a3 =0,
{Li, L7, L7 Y +2K2 (147 —305) (L] )2 +6kZ (L] )2 +6Kk2 qi{L} , L }—12k? P\ +4k? q;: P
Then,

[Lj, L] =0fori#j and [Lj,L]=[L,LF]=0for|i—j|>1,

whereas [L, Li ] and [LF, Lf,,] are related to the other symmetries by

polynomial identities.
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Conclusion

The TTW system can be extended to higher dimensions and leads to
superintegrable systems in non-comformally-flat spaces.

One possible extension was presented here and required a conformally covariant
deformation of the potential in order to use the raising and lowering operator
method to prove superintegrability.

This suggests a ‘natural” differential operator associated with a (conformal-)

Killing tensor that commutes with a onformally covariant Laplacian other than
the usual conformally covariant Laplacian V? — R /6.
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