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Percolation

Percolation models are commonly formulated in a lattice setting in which the edges
and/or vertices are occupied (vacant) with probability p (1− p).

Today I shall confine myself to the square lattice.

I shall refer to occupied edges and vertices as bonds and sites, respectively.

Nearest neighbour sites are said to be connected and clusters are sets of connected
sites.

The behaviour of the model is controlled by the occupation probability p.

When p is smaller than a critical value pc all clusters remain finite.

Above pc there is a non-zero probability P(p) of finding an infinite cluster.

The percolation probability P(p) is the order parameter while the the average cluster
size S(p), which diverges as p → p−c , plays a role similar to a susceptibility.
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Lattice animals and perimeter polynomials
Percolation problems are closely related to the combinatorial problem of lattice
animals. Lattice animals are simply connected subgraphs of a lattice.

The size of a lattice animal is the number of connected vertices (sites).

A vertex is said to be a perimeter site if the vertex is a nearest neighbour of a site in
the lattice animal.

Series expansions for many percolation properties can be obtained as weighted sums
over the number of lattice animals, gs,t , enumerated according to the number of sites
(bonds) s and perimeter t .

Perimeter polynomials are defined as

Ds(q) =
∑

t

gs,tqt

and from these we can find the average number of clusters of size s per vertex

ns(p) = psDs(1− p) =
∑

t

gs,tps(1− p)t
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Scaling theory
According to standard scaling theory the cluster numbers behave as

ns(p) = s−τ f [(p − pc)sσ] (p → pc , s →∞),

where τ = 187/91 and σ = 36/91.

The percolation probability can be expressed in terms of ns(p) as

−P(p) =
∑

s

[ns(p)− ns(pc)]s ∝
∫

s1−τ [f (z)− f (0)]ds

=
1
σ
|p − pc |(τ−2)/σ

∫
|z|−1+(2−τ)/σ[f (z)− f (0)]dz

= (β + γ)|p − pc |β
∫
|z|−1−β [f (z)− f (0)]dz

The percolation probability P(p) is zero for p < pc and it follows that∫ 0

−∞
|z|−1−β [f (z)− f (0)]dz =

∫ 0

−∞
|z|−β

[
df
dz

]
dz = 0

The corresponding integrals in the high-density region (that is the integral from 0 to∞)
should not vanish so as to give a non-zero percolation probability.
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Scaling theory: Numerical tests
The distribution ns(p) has just a single maximum for p ∈ [0, 1].

For the scaling ansatz
to be true we must have that the value of this maximum nmax

s = maxp∈[0,1] ns(p) ∝ s−τ

and the position of the maximum pmax
s must behave as pmax

s − pc ∝ s−σ.
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Scaling theory: Numerical tests

n̄s(z) = sτns(z), with z = (p − pc)sσ, should converge to a unique distribution. Plots
of n̄s(z) vs. z for various values of s will exhibit a scaling collapse to a single curve.
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Scaling theory: Numerical tests

Next we test whether the weighted integral of the derivative of the scaling function
vanishes in the low-density region but is non-zero in the high-density region.∫ 0

−∞
|z|−1−β [f (z)− f (0)]dz =

∫ 0

−∞
|z|−β

[
df
dz

]
dz = 0

We don’t actually know the scaling function f (z) so we use the scaled cluster number
distribution n̄s(z) as an approximation to f (z).

We expect that, as s →∞, the relevant integrals of n̄s(z) vanish in the low-density
region and approach a constant in the high-density region.

The integral runs from −∞ to 0. Since n̄s(z) is just a polynomial approximation to f (z)
we can’t extend the integration to infinity.

However, there is a natural cut-off provided by the scaling variable z and the fact that
the physical low-density region is 0 ≤ p < pc . The integral over z in the low-density
region runs over the interval [−z− = −sσpc , 0].

Integrals over the high-density region is over the interval [0, sσ(1− pc) = z+].
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Scaling theory: Numerical tests
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Asymmetry of scaled distribution

Start with the scaled distribution n̄s(z) = sτns(z), where z = (p − pc)sσ.
Let zs denote the position of the maximum. Look at the asymmetry around zs

n̄s(zs + y)− n̄s(zs − y)
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Let zs denote the position of the maximum. Look at the asymmetry around zs

n̄s(zs + y)− n̄s(zs − y)
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Scaling theory: Cluster Size

S(p) ∝
∑

s

s2ns(p) ∝
∫

s2−τ f (z)ds

=
1
σ
|p − pc |(τ−3)/σ

∫
|z|−1+(3−τ)/σf (z)dz

=
1
σ
|p − pc |−γ

∫
|z|−1+γ f (z)dz

∼ Γ+/−|p − pc |−γ

The universal amplitude ratio Γ−/Γ+ can be estimated by integration of the cluster
number distribution for the average cluster size in the high-density region

I+s =

∫ z+

0
|z|γ−1n̄s(z)dz =

∫ z+

0
zγ−1

∑
k=0

ak zk =
∑
k=0

ak (z+)k+γ/(k + γ),

and in the low-density region

I−s =

∫ 0

−z−

(−z)γ−1n̄s(z)dz =

∫ z−

0
zγ−1

∑
k=0

ak (−z)k =
∑
k=0

(−1)k ak (z−)k+γ/(k + γ),

from which we obtain the estimate Γ−s /Γ+
s = I−s /I+s .
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Amplitude ratios: Bond percolation
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The amplitude ratios have some curvature when plotted against 1/s.

A log-log plot of the difference between consecutive ratios clearly has a power-law
decay with 1/s. The exponent work out to be around 0.85

Extrapolation then give Γ−/Γ+ = 159.2± 0.2.
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Amplitude ratios: Site percolation
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The amplitude ratios have pronounced curvature when plotted against 1/s.

A log-log plot of the difference between consecutive ratios clearly has a power-law
decay with 1/s. In this case the exponent work out to be around 0.55.

Extrapolation then give Γ−/Γ+ = 164.5± 1.5
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