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Some classical groups (and not-so-classical ones)

GL(N,C) = {mi,j , 1 ≤ i , j ≤ N : det(m) "= 0},

U(N) = {mi,j , 1 ≤ i , j ≤ N : det(m) "= 0, &m∗
ij = m−1

ji },

O(N,C) = {mi,j , 1 ≤ i , j ≤ N : mTm = I},

Sp(N,C) = {mi,j , 1 ≤ i , j ≤ N : mTJm = J, J = −JT ,&det(J) "= 0}.

GL1(N,C) = {mi,j , 1 ≤ i , j ≤ N : det(m) "= 0, &
∑

i mij = 1, ∀j};

Oη(N,C) = {mi,j , 1 ≤ i , j ≤ N : mTηm = η, η = ηT ,&det(η) = 0},

Sp(2K + 1,C) = {mi,j , 1 ≤ i , j ≤ 2K + 1 : mTJm = J, J = −JT},

Hπ(N,C) = {mi,j , 1 ≤ i , j ≤ N : m ⊗ · · ·⊗m ◦T = T}.
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Group Characters 101
The character χ(g) of a group G , evaluated on a group element g , in a
representation π is the trace of the matrix representing g , χ(g) = Tr(π(g)). Let
g ∈ G let have eigenvalues x1, x2, · · · , xN . Then we have the following characters:

defining representation s(1) =
∑

i
xi i

symmetric tensor rep s(2) =
∑

i≤j
xixj i j

antisymmetric tensor rep s(1,1) =
∑

i<j
xixj

i
j

Theorems
(i)(Schur-Weyl) The characters of irreducible covariant tensor representations of
GL(N) are certain symmetric polynomials sλ(x1, x2, · · · , xN), defined as ratios of
determinants, where λ = (λ1,λ2, · · · ,λ$) is an integer partition visualised as a
Ferrers diagram.
(ii)The character formula can be written combinatorially via semistandard tableaux,

sλ(x) =
∑

T∈SSTλ

xT

where xT is the monomial x t1
1 x t2

2 · · · x tN
N , and the exponents are multiplicities of the

respective entries in T of shape λ.
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Universal character rings

Let X = {x1, x2, x3, · · · } be a denumerably infinite set of independent variables. For
each partition λ of finite weight |λ| = d , there is a “universal” Schur function
sλ(X ) such that each sλ(x1, x2, x3, · · · , xN) ∈ C[x1, x2, · · · , xN ]

SN
d is given by

specialisation,

sλ(x1, x2, x3, · · · , xN) = sλ(X ), X ≡ (x1, x2, x3, · · · , xN , 0, 0, · · · ).

The ring generated by sλ(X ) is denoted Λ(X ).

Theorems
(i) The ring Char-GL of universal characters of the general linear group is
isomorphic to the ring Λ(X ) of symmetric functions in the alphabet X .

(ii) The rings Char-O and Char-Sp of universal characters of the orthogonal and
symplectic groups are isomorphic to Char-GL, but the basis and product laws differ.

(iii) The ring Char-Hπ of universal characters of the Hπ subgroup of GL is likewise
isomorphic to Char-GL, but these characters are generically decomposable rather
than irreducible.
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Diagram calculus for Char-GL

⇔ Id(sλ) = sλ (identity).

⇔ η(1) = s0 (unit).

⇔ m(sλ ⊗ sµ) = sλ · sµ =
∑

ν

cνλ,µsν (outer product).

⇔ sw(sµ ⊗ sν) = sν ⊗ sµ (switch).

⇔ ∆(sλ) =
∑

µ,ν

cλµ,νsµ ⊗ sν (outer coproduct).

⇔ ε(sλ) = δλ,(0) (counit).

S ⇔ S(sλ) = (−1)|λ|sλ′ (antipode).
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Lemma: The outer product and coproduct with η, ε, S form a Hopf algebra
(Λ,m,∆, η, ε, S).

*
(commutativity).

* * (associativity).

* (bialgebra law ∆(fg) =∆(f )∆(g))

* (cocommutativity).

* * (coassociativity).

SS
** (antipode law).
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Inner product ∗:
Via the Frobenius map ϕ : Char-GL → Char-S, sλ -→ χλ, define the inner product
f ∗ g = ϕ−1

(

ϕ(f ) · ϕ(g)
)

.

⇔ m(sλ ⊗ sµ) = sλ ∗ sµ =
∑

ν

gν
λ,µsν (inner product).

⇔ δ(sλ) =
∑

µ,ν

gλ
µ,νsµ ⊗ sν (inner coproduct).

* ⇔ ∆(f ∗ g) = ∆(f ) ∗∆(g) (mixed bialgebra)

⇔ 1m = M(X ) =
∏

i

(1− xi )
−1 (inner unit).

⇔ 〈sµ | sν〉 := ε(sµ ∗ sν) ≡ δµ,ν (Schur-Hall scalar p).

⇔ δ(M) =
∑

λ

sλ ⊗ sλ ≡ M(XY ) (Cauchy kernel).
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Lemma:
The inner (co)product forms a Frobenius algebra (Λ, ∗, δ, 1m = M) with compatibility

(f ⊗ 1m) ∗ δ(g) = δ(f ∗ g) = δ(f ) ∗ (1m ⊗ g)

Heinz Hopf, 1894-1971 Ferdinand Georg Frobenius, 1817-1849
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Symmetric function series

To handle universal characters of subgroups we need to define series, viz.
Z =

∑

ζ∈Z sζt
|ζ| (working formally in Λ[[t]]).

Examples

M :=
∏

i

1
(1− xi )

= 1+
∑

i

xi +
∑

i≤j

xixj +
∑

i≤j≤k

xixjxk + · · · =
∞
∑

0

s(n)

L :=
∏

i

(1− xi ) = 1−
∑

i

xi +
∑

i<j

xixj −
∑

i<j<k

xixjxk + · · · =
∞
∑

0

(−1)ns(1n)

M(2) :=
∏

i≤j

1
(1− xixj)

= D L(2) :=
∏

i≤j

(1− xixj)= C

M(1,1) :=
∏

i<j

1
(1− xixj)

= B L(1,1) :=
∏

i<j

(1− xixj)= A

Mπ :=
∏

T∈SSTπ

1
(1− xT )

Lπ :=
∏

T∈SSTπ

(1− xT )

The derived series are defined via symmetric function composition or
plethysm, f [g ](X ).
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Skew
Skew is the adjoint of outer multiplication,

λ

⇔ s⊥λ (sµ) = sλ/µ =
∑

〈sλ|s
(1)
µ 〉s(2)µ (skew by sλ).

For a series Z =
∑

ζ∈Z t |ζ|sζ extend linearly,

sλ/Z =
∑

ζ∈Z

sλ/ζ

If W and Z are inverses WZ = 1, we have
(

sλ/W
)

/Z = sλ/(WZ ) ≡ sλ:

W

Z %
W

Z
%

WZ

%
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GL subgroups – characters, branching rules, products
The rings Char-O , Char-Sp of universal characters for the orthogonal and
symplectic groups are isomorphic to Char-GL via skewing by series,
/L(2) ≡ /C and /L(1,1) ≡ /A.

Littlewood denoted universal general linear, orthogonal and symplectic
characters by {λ}, [λ], 〈λ〉 (with alphabet X understood):

[λ] =
∑

γ∈C

{λ/γ}; 〈λ〉 =
∑

α∈A

{λ/α};

Similarly, symmetric functions ((λ)) of Hπ type are defined by the
isomorphism /Mπ : Char-GL → Char-Hπ:

((λ)) =
∑

µ∈Lπ

{λ/µ};

The inverse isomorphisms /D = /C−1, /B = /A−1, /Lπ = /M−1
π ,

correspond to group branching, and give the rules for resolving GL
representations into a sum of representations of the respective subgroups
(indecomposable in the case of Hπ).

Peter Jarvis (Utas) Group Character Rings AustMS, Lorne, Dec 2012 12 / 29



Newell-Littlewood rule

[λ][µ] =
∑

α

[λ/α · µ/α], 〈λ〉〈µ〉 =
∑

α

〈λ/α · µ/α〉.

π-Newell Littlewood rule (Fauser, PDJ, King, Wybourne 2006)

((λ))((µ)) =
∑

αk

((

λ/
p
∏

k=1

αk [π
′
(1)] · µ/

p
∏

k=1

αk [π
′
(2)]

))

Dudley E Littlewood, 1903-1979

⇔

λ ⊗ µ
λ(1) ⊗ λ(2) ⊗ µ(1) ⊗ µ(2)∑

α λ(1) ⊗ λ(2) ⊗ µ(1) ⊗ µ(2) ⊗ α ⊗ α
∑

α λ(1) ⊗ µ(1) ⊗ λ(2) ⊗ µ(2) ⊗ α ⊗ α
∑

α λ(1) ⊗ µ(1) ⊗ λ(2) ⊗ 〈µ(2)|α〉α
∑

α λ(1) · µ(1) ⊗ λ(2) ⊗ 〈µ(2)|α〉α
∑

α λ(1) · µ(1)〈λ(2)|α〉〈µ(2)|α〉

.
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Explicit forms for subgroup characters
Generating functions:

For the following we adopt the notation s
(π)
λ (X ) for the universal

Char-Hπcharacters (omitting the superfix for ordinary S-functions).
Lemma (Fauser, PDJ, King 2010)

Lπ(Z )M(XZ ) =
∑

λ

s
(π)
λ (X )sλ(Z )

Examples
∏

i≤j

(1− zizj)
∏

i,j

(1− xizj)
−1 =

∑

λ

s
(2)
λ (X )sλ(Z ); (orthogonal)

∏

i<j

(1− zizj)
∏

i,j

(1− xizj)
−1 =

∑

λ

s
(12)
λ (X )sλ(Z ); (symplectic)

∏

i≤j≤k

(1− zizjzk)
∏

i,j

(1− xizj)
−1 =

∑

λ

s
(3)
λ (X )sλ(Z );

∏

i '=j

(1− z2i zj)
∏

i<j<k

(1− zizjzk)
2
∏

i,j

(1− xizj)
−1 =

∑

λ

s
(21)
λ (X )sλ(Z );

∏

i<j<k

(1− zizjzk)
∏

i,j

(1− xizj)
−1 =

∑

λ

s
(13)
λ (X )sλ(Z ).
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Vertex operator realisations
For the following we work in the extension Λ[[z ]] keeping the degree counting
parameters z1, z2, · · · and suppressing the underlying alphabet X . Thus
M(z ,X ) =

∏

i (1− zxi )−1 =
∑

zns(n) is written just as M(z).

S-functions sλ:
The standard (Bernstein) form of vertex operator is V (z) := M(z)L⊥(1/z).
Let Z = (z1, z2, · · · , z&) and for any partition λ whose number of parts is ≤ $
let Zλ = zλ1

1 zλ2
2 · · · zλ$

& and [Zλ]
(

·
)

be the coefficient of Zλ in
(

·
)

. Then

sλ(z1, z2, · · · , z&) = [Zλ]V (z1)V (z2) · · ·V (z&) · 1 .

Symmetric functions s
(π)
λ (Baker 1995; Fauser, PDJ, King 2010):

Let π be a partition of weight p ≥ 1. Then

s
(π)
λ (z1, z2, · · · , z&) = [Zλ]V π(z1)V

π(z2) · · ·V
π(z&) · 1 .

with

V π(z) = (1− zpδπ,(p))M(z)L⊥(1/z)
p−1
∏

k=1

L⊥π/(k)(z
k)
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Vertex operators -ctd

Vertex operators belong to End(Λ), and can be written working in the algebraic
basis of power sum functions pk(X ) =

∑

xki and realising the duals p⊥k as k∂/∂pk
(equivalent to a Heisenberg algebra). From the series expansion for ln(1− x) it
follows that M(z) = exp

(
∑

k≥1 z
kpk/k

)

and thus

V (z) = (1− z) exp





∑

k≥1

zk

k
pk



 exp



−
∑

k≥1

z−k ∂

∂pk



 ;

Similar mode sum expressions can be worked out for the universal subgroup
characters; for example

V (21)(z) = (1− z) exp





∑

k≥1

zk

k
pk



 exp



−
∑

k≥1

(z−k + zk)
∂

∂pk
+ kzk

∂2

∂p2k



 .
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The Cauchy kernel revisited
The subgroup products are deformations via convolution with a 0-2 tangle
(co-scalar product) which in the case of Char-O and Char-Sp is identically the
Cauchy kernel, i.e. r(2) = r(1,1) = M(XY )
The general 0-2 tangle rπ is a convolutive product of p = |∆′π| Cauchy
kernels, whose downward lines are modified by the insertion of plethysms
coming from the corresponding cut coproduct parts of π:

⇔ r(2) = r(1,1) :: 1 *→
∑

α
α⊗ α,

22 ⇔ r(3) :: 1 *→
∑

α,β
α[2] · β ⊗ α · β[2],

rπ ∼=

· · · · · · · · · · · ·

π′
(1)1 π′

(1)p π′
(2)1 π′

(2)p

.
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Main results
Associated with the 0-2 tangle rπ we define the 2-2 tangle Rπ,

Rπ
∼=

rπ

Rπ(f ⊗ g) =
∑

α

f ·
p
∏

k=1

αk [π
′
(1)]⊗ g ·

p
∏

k=1

αk [π
′
(2)].

Theorem
(i) The co-scalar product rπ is a co-quasitriangular structure on the outer
Hopf algebra Λ.
(ii) Dually, Λ with Rπ as defined above is a braided Hopf algebra. Rπ satisfies
the Yang-Baxter relation

R12
π R13

π R23
π = R23

π R13
π R12

π .

and the object cπ := sw◦Rπ is a braid.

(Proof: the central fact is that the dual of rπ is a 2-cocycle in the
appropriate cohomology; other structural axioms come from the properties of
outer product, antipode and other elements as already considered).
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Knot projections and the braid alphabet

S1

i
K ⊂ R

3 ⊂ C
3

πT

T

∼=
Bn

braid-alphabet =
{

;;;;

∣

∣

∣
relations

}
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Char-Hπ as a ribbon Hopf algebra

We want to get information on the braid group by working with diagram
calculus in Char-Hπ according to the scheme:

Bn :
trivialize !!

hom

""

Sn :

Char-Hπ : ## rewrite (iso) !! GL :

trivialize (rπ = η ⊗ η)

$$

The diagrammatic rules do not permit removal of line twists, or writhes, so
we adopt the modified Reidemeister R1′ move

Adopt the simplified notation rπ =
∑

απ
(1) ⊗ απ

(2) to symbolise the running

variables in the Sweedler sums, and also define Qπ :=
∏

απ
(1) · α

π
(2)

Lemma
For each integer partition π the universal character ring Char-Hπ, with outer Hopf
algebra inherited from Char-GL , is a ribbon Hopf algebra with writhe element Qπ

and braid alphabet given by the following dictionary · · ·
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braid Char-Hπ tangle Char-GL tangle algebraic expression

c
π
ΛΛ λ⊗ µ *→

∑

α µ ·απ
(2) ⊗ λ ·απ

(1)

c
π
ΛΛ λ⊗ µ *→

∑

α µ ·S(απ
(2))⊗ λ ·απ

(1)

c
π
Λ∗Λ

∼= λ∗ ⊗ µ *→
∑

α µ ·απ
(2) ⊗ (λ/απ

(1))
∗

c
π
Λ∗Λ

∼= λ∗ ⊗ µ *→
∑

α µ ·S(απ
(2))⊗ (λ/απ

(1))
∗

c
π
Λ∗Λ∗

∼=
λ∗ ⊗ µ∗ *→

∑

α(µ/α
π
(2))

∗ ⊗ (λ/απ
(1))

∗

c
π
Λ∗Λ∗

∼=
λ∗ ⊗ µ∗ *→

∑

α(µ/S(α
π
(2)))

∗ ⊗ (λ/απ
(1))

∗

c
π
ΛΛ∗

∼= λ⊗ µ∗ *→
∑

α(µ/α
π
(2))

∗ ⊗ λ ·απ
(1)

c
π
ΛΛ∗

∼= λ⊗ µ∗ *→
∑

α(µ/S(α
π
(2)))

∗ ⊗ λ ·απ
(1)
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map Char-Hπ tangle Char-GL tangle algebraic expression

b 1 *→
∑

σ ⊗ σ∗

d λ∗ ⊗ µ *→ 〈λ|µ〉

bπ
∼= 1 *→

∑

ρ∗ ⊗ ρ

dπ
∼= λ⊗ µ∗ *→ 〈µ|λ〉

θπ ∼= λ *→ Qπ · λ

(θπ)−1 ∼= λ *→ (Qπ)−1 · λ

Peter Jarvis (Utas) Group Character Rings AustMS, Lorne, Dec 2012 22 / 29



Knot invariant operators

Complete knots and links are projected as decorated images of products of
circles, and so must be interpreted in terms of slicings of 0-0 tangles.
Consider

⇔
1 *→

*→
∑

σ σ ⊗ σ∗

*→
∑

σ〈σ|σ〉 ≡
∑

σ 1= ∞

Instead we cut and open one strand (or more) of the 0-0 tangle, and evaluate
the resulting 1-1 tangle invariant as an element of End(Λ) (or of End(⊗kΛ)
for a k-k tangle).

A knot K is isotopic to the closure of a braid element in Bm, by means of a
word of length $, bK = bi1

e1bi2
e2 · · · bi$

e$ , where each ik ∈ {1, 2, · · · ,m− 1},
with each exponent ei = ±1.

We have $ ≡
∑

i |ei |, while the sum wK =
∑

i ei := w+ − w− is the writhe of
the knot or link projection (the difference between the positive and negative
exponent sums).
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Knot invariant operators -ctd
For example for the knot 8 1 and its braid representation we have

⇔

The image of b8 1 under the homomorphism B5 → S5 is the 5-cycle
(42531). Labelling the 5 downward braid strands with S-functions σ1 (open),
σ2, σ3, σ4, σ5, after braiding but before closing cups, the element is

∑

σ4 ·(α1α2α7α9α10)⊗ σ5 ·(α1α2α4α5α6α8)⊗

⊗σ1 ·(α8α9)⊗ σ2 ·(α6α7)⊗ σ3 ·(α3α4)⊗ σ2 ⊗ · · ·⊗ σ5,

with the α · · ·α standing for the summations over Sweedler part plethysms
associated with the 10 crossings in this case.
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Knot invariant operators -ctd

Closing the braids enforces identification between respective S-functions and
(allowing for antipodes) restores the distributed parts to a product of Qπ

±1

factors so that the 8 1 knot invariant operator (on σ1) in this case is
σ1 → (Qπ)−2σ1.

Theorem (Fauser, PDJ, King 2012)
(i) The Hπ invariant in End(Λ) for a knot K is

IK = (Qπ)
wK .

(ii) The Hπ invariant in End(Λ⊗ Λ) for a 2-component link L (with braid
presentation cut on each component knot K1, K2) is

IL = (Qπ)
w1 ⊗ (Qπ)

w2 · (rπ)
w12

where w12 is the linking number of the two knots.
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. . . Brian realized that this is an elementary ex-
ample of what Littlewood has called a plethysm,
which treats the symmetry of the products of ob-
jects that themselves possess symmetry. Elliott had
used plethysms in his nuclear studies, but no one
had noticed their relevance to atomic shell theory
before. At a conference at the US National Bureau
of Standards in 1967, Brian unflinchingly described
the details of the mathematics. The audience was
stunned. At the end of Brians presentation a de-
spairing voice asked, ‘What is a plethysm?’ We were
all surprised to hear Brian say that a full explanation
would take too much time. . .
– B R Judd, Interaction with Brian Wybourne,
2004

Schur: An Interactive Program For Calculating Properties Of Lie Groups and Symmetric

Functions, http://sourceforge.net/projects/schur
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Example: s(12)[s(2)] in GL(3)

The semi-standard tableaux T (and monomials xT ) for are

SST =
{

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3

}

,

∴ s(2) = x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3

– that is, the alphabet Y = {xT} ≡ (x2
1 , x1x2, x1x3, x

2
2 , x2x3, x

2
3 ).

Forming
∑

T<T ′ x
T xT ′

gives 15 monomials,

x3
1 x2 + x3

1 x3 + x2
1 x

2
2 + x2

1 x2x3 + x2
1 x

2
3+

x2
1 x2x3 + x1x

3
2 + x1x

2
2 x3 + x1x2x

2
3 + x1x

2
2 x3+

x1x2x
2
3 + x1x

3
3 + x3

2 x3 + x2
2 x

2
3 + x2x

3
3

∴ s(12)[s(2)] = s(3,1) ↔



















1 1 1
2 ,

1 1 1
3 ,

1 1 2
2 ,

1 1 2
3 ,

1 1 3
3 ,

1 1 3
2 ,

1 2 2
2 ,

1 2 2
3 ,

1 2 3
3 ,

1 2 3
2 ,

1 3 3
2 ,

1 3 3
3 ,

2 2 2
3 ,

2 2 3
3 ,

2 3 3
3 .



















.
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Relations in the braid group Bn

% %
R0: The zeroth or topological

Reidemeister move ( ∼= closure).

% % R1: The first Reidemeister move.

∼= ∼= R1’: The first’ Reidemeister move.

% % R2: The second Reidemeister move.

%
R3: The third Reidemeister move,

( ∼= Yang-Baxter equation).
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