# On highest weight representations of conformal Galilei algebras

Phillip S. Isaac<sup>†</sup> (with Naruhiko Aizawa\* and Yuta Kimura\*)

† Centre for Mathematical Physics, The University of Queensland, St Lucia, Australia,

\* Department of Mathematics and Information Sciences, Osaka Prefecture University,
Osaka, Japan

ANZAMP 2012



### Outline

- Some motivation and definition of conformal Galilei algebras
- Singular vectors and irreducible modules
- Kac determinants
- Summary and future work



# Infinitesimal transformations in d+1 dimensional space-time

(Negro, del Olmo, Rodriguez-Marco 1997; Martelli, Tachikawa 2010)

$$\ell \in \frac{1}{2}\mathbb{Z}, \quad i,j=1,2,\ldots,d$$

- Rotation  $J_{ij} = -x_i \frac{\partial}{\partial x_j} + x_j \frac{\partial}{\partial x_i}$ ;  $(x_i \longrightarrow x_i + \epsilon x_j, x_j \longrightarrow x_j \epsilon x_i)$
- Time translation  $H = \frac{\partial}{\partial t} \ (t \longrightarrow t + \epsilon)$
- Dilatation  $D = -2t\frac{\partial}{\partial t} 2\ell x_i \frac{\partial}{\partial x_i} \ (t \longrightarrow (1 2\epsilon)t, \ x_i \longrightarrow (1 2\ell\epsilon)x_i)$
- Conformal transformation  $C = t^2 \frac{\partial}{\partial t} + 2\theta t + \frac{\partial}{\partial t} \frac{\partial}{\partial t}$

$$C = t^2 \frac{\partial}{\partial t} + 2\ell t x_i \frac{\partial}{\partial x_i} \left( t \longrightarrow (1 + \epsilon t)t, x_i \longrightarrow (1 + 2\ell \epsilon t)x_i \right)$$

- $P_{n,i} = (-t)^n \frac{\partial}{\partial x_i}, \ n = 0, 1, \dots, 2\ell$ 
  - n = 0 (translation)  $(x_i \longrightarrow x_i + \epsilon)$
  - n = 1 (Galilean boost)  $(x_i \longrightarrow x_i \epsilon t)$
  - n = 2 (acceleration) ...  $(x_i \longrightarrow x_i + \epsilon t^2)$



# Infinitesimal transformations in d+1 dimensional space-time

(Negro, del Olmo, Rodriguez-Marco 1997; Martelli, Tachikawa 2010)

$$\ell \in \frac{1}{2}\mathbb{Z}, \quad i,j=1,2,\ldots,d$$

- Rotation  $J_{ij} = -x_i \frac{\partial}{\partial x_i} + x_j \frac{\partial}{\partial x_i}$ ;  $(x_i \longrightarrow x_i + \epsilon x_j, x_j \longrightarrow x_j \epsilon x_i)$
- Time translation  $H = \frac{\partial}{\partial t} (t \longrightarrow t + \epsilon)$
- Dilatation  $D = -2t\frac{\partial}{\partial t} 2\ell x_i \frac{\partial}{\partial x_i} (t \longrightarrow (1 2\epsilon)t, x_i \longrightarrow (1 2\ell\epsilon)x_i)$
- Conformal transformation

$$C = t^2 \frac{\partial}{\partial t} + 2\ell t x_i \frac{\partial}{\partial x_i} \left( t \longrightarrow (1 + \epsilon t)t, x_i \longrightarrow (1 + 2\ell \epsilon t)x_i \right)$$

- $P_{n,i}=(-t)^n\frac{\partial}{\partial x_i}, \ n=0,1,\ldots,2\ell$ 
  - n = 0 (translation)  $(x_i \longrightarrow x_i + \epsilon)$
  - n = 1 (Galilean boost)  $(x_i \longrightarrow x_i \epsilon t)$
  - n = 2 (acceleration) ...  $(x_i \longrightarrow x_i + \epsilon t^2)$



ANZAMP 2012

## Non-trivial commutation relations

$$[D, H] = 2H, [D, C] = -2C, [C, H] = D, (sl(2))$$

$$[J_{ij}, J_{k\ell}] = \delta_{ik}J_{j\ell} + \delta_{j\ell}J_{ik} - \delta_{i\ell}J_{jk} - \delta_{jk}J_{i\ell}, \quad (so(d))$$

$$[H, P_{n,i}] = -nP_{n-1,i}, \quad [D, P_{n,i}] = 2(\ell - n)P_{n,i}, \quad [C, P_{n,i}] = (2\ell - n)P_{n+1,i}$$

$$[J_{ij}, P_{n,k}] = \delta_{ik}P_{n,j} - \delta_{jk}P_{n,i} \ (\{P_{n,i}\} \text{ Abelian ideal}) \Rightarrow \text{non-semisimple.}$$

Abelian ⇒ solvable ⇒ nontrivial maximal solvable ideal (semisimple ⇔ trivial maximal solvable ideal)



## Central extensions

There are two types of central extensions:

(1) For any d,  $\ell = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \dots$ 

$$[P_{m,i},P_{n,j}]=I_{mn}\delta_{ij}M$$

where M is central,  $I_{mn}$  is antisymmetric.

(2) For d = 2,  $\ell = 1, 2, 3, \dots$ 

$$[P_{m,i},P_{n,j}]=\hat{I}_{mn}\epsilon_{ij}\Theta$$

where  $\Theta$  is central,  $\hat{I}_{mn}$  is symmetric,  $\epsilon_{ij}$  is antisymmetric.

(Bargmann 1954; Levy-Leblond 1972; Jackiw, Nair 2000; Lukierski, Stichel, Zakrzewski 2006, 2007; Martelli, Tachikawa 2010)



# Example: Schrödinger algebra $(\ell = \frac{1}{2})$ with central extension

(Niederer 1972; Dobrev, Doebner, Mrugalla 1997)

Differential operator realisation:

$$\begin{split} P_{0,j} &= \frac{\partial}{\partial x_j}, \quad P_{1,j} = -t \frac{\partial}{\partial x_j} - m x_j, \quad M = m, \\ H &= \frac{\partial}{\partial t}, \quad D = -2t \frac{\partial}{\partial t} - x_k \frac{\partial}{\partial x_k} - \frac{1}{2}, \\ C &= t^2 \frac{\partial}{\partial t} + t x_j \frac{\partial}{\partial x_j} + \frac{1}{2} m x_k x_k - \frac{t}{2}, \\ J_{ij} &= -x_i \frac{\partial}{\partial x_j} + x_j \frac{\partial}{\partial x_i}. \end{split}$$

 $\Rightarrow$  Lie symmetries of (i) free Schrödinger equation (m pure imaginary);

(ii) heat equation (m real)

$$\nabla^2 \psi - 2m \frac{\partial \psi}{\partial t} = 0.$$



## Invariant equations



Canonical construction of invariant equations via a differential operator realisation.

Generalised to the (non-semisimple) centrally extended Schrödinger algebra.

This method requires knowledge of singular vectors.

## Non-semisimple Lie algebras

Representation theory is well understood for semisimple Lie algebras (e.g. Weyl's theorem, theory of weights, etc.).

Representation theory of non-semisimple Lie algebras remains largely undeveloped.

- → In some cases it is possible to study highest weight submodules of the Verma modules using a triangular decomposition of the Lie algebra consistent with the triangular decomposition of its semisimple part.
- → Conjecture (Dobrey, Doebner, Mrugalla 1997): A theory of highest weight modules can be developed for arbitrary non-semisimple Lie algebras with such a triangular decomposition.
- → Requires knowledge of *singular vectors*.
- $\Rightarrow$  Motivation is twofold: (1) invariant equations, (2) highest weight modules

# $\mathfrak{g}_\ell$ : Conformal Galilei algebra with central extension, $d=1,\ \ell=\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{7}{2},\ldots$

(Aizawa, PSI, Kimura 2012):

Basis 
$$\{C, D, H, P_n \mid n = 0, 1, 2, \dots, 2\ell\}$$
  
 $[D, H] = 2H,$   $[D, C] = -2C,$   $[C, H] = D,$   
 $[H, P_n] = -nP_{n-1},$   $[D, P_n] = 2(\ell - n)P_n,$   $[C, P_n] = (2\ell - n)P_{n+1},$   
 $[P_m, P_n] = I_{m,n}M,$   $I_{m,n} = \delta_{m+n,2\ell}(-1)^{m+\ell+\frac{1}{2}}m!(2\ell - m)!$ 

Triangular decomposition:

$$\begin{split} &\mathfrak{g}_{\ell}^{+} = \left\{ \ H, \ P_{0}, \ P_{1}, \ \cdots, \ P_{\ell - \frac{1}{2}} \ \right\} \\ &\mathfrak{g}_{\ell}^{0} = \left\{ \ D, \ M \ \right\} \\ &\mathfrak{g}_{\ell}^{-} = \left\{ \ C, \ P_{\ell + \frac{1}{2}}, \ P_{\ell + \frac{3}{2}}, \ \cdots, \ P_{2\ell} \ \right\}. \end{split}$$



### Verma module

Let  $|\delta,\mu\rangle$  be a highest weight vector of the Verma module  $V^{\delta,\mu}$ , such that

$$D |\delta, \mu\rangle = \delta |\delta, \mu\rangle$$
,  $M |\delta, \mu\rangle = \mu |\delta, \mu\rangle$ ,  $X |\delta, \mu\rangle = 0$ ,  $X \in \mathfrak{g}_{\ell}^+$ ,

with  $V^{\delta,\mu}$  being determined by  $U(\mathfrak{g}_{\ell}^{-})\ket{\delta,\mu}$  .

 $\Rightarrow$  basis of  $V^{\delta,\mu}$  is

$$\left\{ C^{h} \prod_{j=0}^{\ell-\frac{1}{2}} P_{\ell+\frac{1}{2}+j}^{k_{j}} |\delta,\mu\rangle \;\middle| \quad h, k_{0}, k_{1}, \ldots, k_{\ell-\frac{1}{2}} \in \mathbb{Z}_{+} \right\}.$$

Eigenvalue of D corresponding to  $C^h \prod_{i=0}^{\ell-\frac{1}{2}} P_{\ell+\frac{1}{2}+j}^{k_j} |\delta,\mu\rangle$  is  $\delta-2h-\sum_{i=0}^{\ell-\frac{1}{2}} (2j+1)k_j$ .

$$\Rightarrow$$
 Define "level"  $m$  within  $V^{\delta,\mu}$  by  $m=2h+\sum_{j=0}^{\ell-\frac{\delta}{2}}(2j+1)k_j$ .

### Notation

For a fixed level m, since  $k_0 = m - 2h - \sum_{j=1}^{c-\frac{1}{2}} (2j+1)k_j$ , we find it convenient to denote the basis vectors at level m by

$$|h, \underline{k}; m\rangle = C^h P_{\ell+\frac{1}{2}}^{m-2h-\sum_{j=1}^{\ell-\frac{1}{2}} (2j+1)k_j} \prod_{j=1}^{\ell-\frac{1}{2}} P_{\ell+\frac{1}{2}+j}^{k_j} |\delta, \mu\rangle,$$

with  $k = (k_1, k_2, \cdots, k_{\ell - \frac{1}{2}})$ .

We have

$$V^{\delta,\mu} = \bigoplus_{m \in \mathbb{Z}_+} V_m^{\delta,\mu},$$

where  $V_m^{\delta,\mu}$  is the space spanned by the vectors  $|h, k; m\rangle$  for fixed m.



## Singular vectors

For m>0, a singular vector  $|u_m\rangle$  is defined as an element of  $V_m^{\delta,\mu}$  satisfying

$$\mathfrak{g}_{\ell}^{+} \left| u_{m} \right\rangle = 0, \quad \mathfrak{g}_{\ell}^{+} = \left\{ \right. \left. H, \right. \left. P_{0}, \right. \left. P_{1}, \right. \left. \cdots, \right. \left. P_{\ell - \frac{1}{2}} \right. \left. \right\}.$$

#### Theorem

(1) If  $2\delta - 2(q-1) + (\ell + \frac{1}{2})^2 = 0$  for  $q \in \mathbb{Z}^+$  then the following is a singular vector at level 2q:

$$|u_{2q}\rangle = \left(\alpha_{\ell}\mu C - P_{\ell+\frac{1}{2}}^2\right)^q |\delta,\mu\rangle \in V_{2q}^{\delta,\mu}$$

where  $\alpha_{\ell} = 2((\ell - \frac{1}{2})!)^2$ .

(2) In order for the vector  $|u_m\rangle=\sum a(h,\underline{k})\,|h,\underline{k};m\rangle$  to be a singular vector, mmust be even, in which case the coefficients a(h, k) are unique up to an overall factor.

## Irreducible highest weight modules

 $\Rightarrow V^{\delta,\mu}$  has precisely one singular vector that exists at level 2q with

$$\delta = q-1-rac{1}{2}\left(\ell+rac{1}{2}
ight)^2.$$

 $\Rightarrow V^{\delta,\mu}$  contains the submodule  $I^{\delta,\mu} = U(\mathfrak{g}_{\ell}^{-}) | u_{2g} \rangle$ .

Using similar arguments to part (2) of the previous theorem, one may show that there are no singular vectors in the quotient module  $V^{\delta,\mu}/I^{\delta,\mu}$ .

#### Theorem

The irreducible highest weight modules of  $\mathfrak{g}_{\ell}$  for half odd integer  $\ell$  with  $\mu \neq 0$  are listed as follows:

- $V^{\delta,\mu}$  if  $\delta \neq q 1 \frac{1}{2} (\ell + \frac{1}{2})^2$ ,
- $V^{\delta,\mu}/I^{\delta,\mu}$  if  $\delta = q 1 \frac{1}{2} (\ell + \frac{1}{2})^2$ ,

where  $q \in \mathbb{Z}^+$ . All modules are infinite dimensional.



## Shapovalov form

P S Isaac (UQ)

The Shapovalov form (Shapovalov 1972) ( , ) on  $V^{\delta,\mu}$  is defined by setting

$$(|\delta, \mu\rangle, |\delta, \mu\rangle) \equiv \langle \delta, \mu | \delta, \mu\rangle = 1,$$

and

$$(A|x\rangle, B|y\rangle) = (|x\rangle, \omega(A)B|y\rangle), \quad \forall |x\rangle, |y\rangle \in V^{\delta,\mu}, \ A, B \in \mathfrak{g}_{\ell},$$

where  $\omega$  is an algebra anti-automorphism defined by

$$\omega(P_i) = P_{2\ell-i}, \ \omega(C) = H, \ \omega(H) = C, \ \omega(D) = D, \ \omega(M) = M.$$

This form is symmetric when restricted to the basis  $\{|h, k; m\rangle\}$  of  $V_m^{\delta,\mu}$ .



## Matrix of Shapovalov forms at level m

Given an ordered basis  $\{v_i\}$  of  $V_m^{\delta,\mu}$ , define a matrix whose entry in the *i*th row and *j*th column is the number  $(v_i,v_j)$ .

e.g. 
$$V_2^{\delta,\mu}$$
 has basis  $\left\{ v_1 = |0,0;2\rangle = P_{\ell+\frac{1}{2}}^2 |\delta,\mu\rangle, \quad v_2 = |1,0;2\rangle = C |\delta,\mu\rangle \right\}$ 

$$\Rightarrow \begin{pmatrix} (v_1, v_1) & (v_1, v_2) \\ (v_2, v_1) & (v_2, v_2) \end{pmatrix} = \begin{pmatrix} 2((\ell - \frac{1}{2})!(\ell + \frac{1}{2})!)^2\mu^2 & ((\ell + \frac{1}{2})!)^2\mu^2 \\ ((\ell + \frac{1}{2})!)^2\mu^2 & -\delta \end{pmatrix}$$

The null space of such a matrix gives a set of *null vectors*, that are orthogonal to the basis vectors.

- Null vectors exist iff determinant is zero.
- Singular vectors are null vectors.
- Descendents of null vectors are also null vectors.



### Kac determinant

The determinant of the matrix of Shapovalov forms is referred to as the *Kac determinant* at level m, denoted  $\mathcal{D}_m^{\ell}$ .

e.g. For 
$$m=2$$
,  $\mathcal{D}_m^\ell=-\mu^2((\ell-\frac{1}{2})!(\ell+\frac{1}{2})!)^2(2\delta+(\ell+\frac{1}{2})^2)$ 

Recall the **Theorem** on existence of singular vectors:

If  $2\delta - 2(q-1) + (\ell + \frac{1}{2})^2 = 0$  for  $q \in \mathbb{Z}^+$  then there exists a singular vector at level 2q.

Conjecture (Dobrev, Doebner, Mrugalla 1997): For  $\ell = \frac{1}{2}$ ,

$$\mathcal{D}_m^{1/2} = C_m \mu^{\alpha_m} \prod_{i=0}^{\lfloor \frac{m}{2} \rfloor - 1} (2\delta - 2j + 1)^{\lfloor \frac{m}{2} \rfloor - j}$$

where

$$\alpha_m = \begin{cases} \frac{1}{4}m(m+2); & m \text{ even} \\ \frac{1}{4}(m+1)^2; & m \text{ odd.} \end{cases}$$

# Dimension of $V_m^{\delta,\mu}$

Vectors in the basis  $\{|h, k; m\rangle\}$  are in one to one correspondence with the restricted set of integer partitions of the integer m, with parts taken from the subset of integers

$$\{2\} \cup \left\{2j+1 \mid j=0,1,\ldots,\ell-\frac{1}{2}\right\}.$$

Vectors in the basis of  $V_m^{\delta,\mu}$  can be enumerated by

$$\left\{ (h, k_1, \dots, k_j, \dots, k_{\ell - \frac{1}{2}}) \mid 0 \le h \le \left\lfloor \frac{m}{2} \right\rfloor, \ 0 \le k_{\ell - \frac{1}{2}} \le \left\lfloor \frac{m - 2h}{2(\ell - \frac{1}{2}) + 1} \right\rfloor, \dots \right.$$

$$\dots 0 \le k_j \le \left\lfloor \frac{m - 2h - \sum_{n=j+1}^{\ell - \frac{1}{2}} (2n+1)k_n}{2j+1} \right\rfloor, \dots,$$

$$\dots 0 \le k_1 \le \left\lfloor \frac{m - 2h - \sum_{n=2}^{\ell - \frac{1}{2}} (2n+1)k_n}{3} \right\rfloor.$$

# Dimension of $V_m^{\delta,\mu}$

 $\Rightarrow \dim(V_m^{\delta,\mu}) \equiv d_m^\ell$  given by

$$\Rightarrow d_{m}^{\ell} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \left\lfloor \frac{m-2h}{2(\ell-\frac{1}{2})+1} \right\rfloor \dots \left\lfloor \frac{m-2h-\sum_{n=j+1}^{\ell-\frac{1}{2}}(2n+1)k_{n}}{2j+1} \right\rfloor \dots \sum_{k_{j}=0} \dots \sum_{k_{1}=0} 1.$$

e.g.

$$d_{m}^{1/2} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} 1, \qquad d_{m}^{5/2} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \sum_{k_{2}=0}^{\left\lfloor \frac{m-2h}{5} \right\rfloor} \sum_{k_{1}=0}^{\left\lfloor \frac{m-2h-5k_{2}}{3} \right\rfloor} 1,$$

$$d_{m}^{3/2} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \sum_{k_{1}=0}^{\left\lfloor \frac{m-2h}{3} \right\rfloor} 1, \qquad d_{m}^{7/2} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \sum_{k_{2}=0}^{\left\lfloor \frac{m-2h-7k_{3}}{3} \right\rfloor} \sum_{k_{2}=0}^{\left\lfloor \frac{m-2h-7k_{3}-5k_{2}}{3} \right\rfloor} 1$$

## Dimension of $V_m^{\delta,\mu}$

Characterise  $d_m^{\ell}$  by the generating function

$$F^{\ell}(x) = \frac{1}{1 - x^2} \prod_{j=0}^{\ell - \frac{1}{2}} \frac{1}{1 - x^{2j+1}},$$

in the sense that the coefficients of the formal power series are the numbers  $d_m^\ell$ , i.e.

$$F^{\ell}(x) = \sum_{m=0}^{\infty} d_m^{\ell} x^m.$$

e.g.

$$d_m^{1/2} = \left\lfloor \frac{m+2}{2} \right\rfloor, \qquad d_m^{5/2} = \left\lfloor \frac{2m^3 + 33m^2 + 162m + 360}{360} \right\rfloor,$$
 
$$d_m^{3/2} = \left\lfloor \frac{m^2 + 6m + 12}{12} \right\rfloor, \qquad d_m^{7/2} = \left\lfloor \frac{m^4 + 36m^3 + 442m^2 + 2124m + 5040}{5040} \right\rfloor.$$

## Dependence on $\delta$

- Singular vectors are null vectors & we count descendants
- $\Rightarrow \mathcal{D}_m^\ell$  contains the factor  $\left(2\delta-2(q-1)+\left(\ell+\frac{1}{2}\right)^2\right)^{d_{m-2q}^\ell}$ , for every integer q>0 satisfying  $m\geq 2q$ .
  - For  $h \leq h'$ ,  $\langle h, \underline{k}; m | h', \underline{k}'; m \rangle \sim \delta^h$
- $\Rightarrow$  Diagonal entries contain polynomials in  $\delta$  of maximal degree
- $\Rightarrow \mathcal{D}_m^\ell$  is a polynomial in  $\delta$  of degree given by the number of C generators in all basis vectors.
  - The number of vectors in the basis of  $V_m^{\delta,\mu}$  containing  $C^h$  must be  $O_{m-2h}^{2\ell}$ , where  $O_n^{2\ell}$  is the number of integer partitions of n comprising only odd parts no greater than  $2\ell$ .
- $\Rightarrow$  Number of C generators in all basis vectors is  $\sum_{n=0}^{\lfloor \frac{n}{2} \rfloor} n O_{m-2n}^{2\ell}$ .



## Dependence on $\delta$

One may show

$$\sum_{n=0}^{\lfloor \frac{m}{2} \rfloor} n O_{m-2n}^{2\ell} = \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor - 1} d_{m-2(j+1)}^{\ell},$$

RHS = sum of powers of the previously obtained factors.

 $\Rightarrow \mathcal{D}_m^\ell$  is of the form

$$\mathcal{D}_{m}^{\ell} = f(\mu) \prod_{i=0}^{\lfloor \frac{m}{2} \rfloor - 1} \left( 2\delta - 2j + \left( \ell + \frac{1}{2} \right)^{2} \right)^{d_{m-2(j+1)}^{\ell}}$$



## Dependence on $\mu$

For a vector  $\mathbf{v} \equiv |h, \mathbf{k}; m\rangle$  in the basis  $\gamma = \{|h, \mathbf{k}; m\rangle\}$  of  $V_m^{\delta,\mu}$ , define the  $\mu$ -weight of  $\mathbf{v}$ , denoted  $\rho_{\mathbf{v}}$ , as

$$\rho_{\mathsf{v}} = \mathsf{m} - 2\left(\mathsf{h} + \sum_{j=1}^{\ell - \frac{1}{2}} \mathsf{j} \mathsf{k}_{\mathsf{j}}\right).$$

Note that  $\rho_v$  is the sum of powers of all the  $P_n$ -type generators appearing in v.

- For all  $v, w \in \gamma$ , either (v, w) = 0 or  $(v, w) = Y \mu^{\frac{1}{2}(\rho_v + \rho_w)}$ .
- $\Rightarrow \mathcal{D}_m^{\ell} = Z \mu^{\sum_{v \in \gamma} \rho_v}.$
- Let  $e_m^{\ell} = \sum_{v \in \gamma} \rho_v$ , which gives the total number of  $P_n$ -type generators that occur in the basis  $\gamma$ .

$$\Rightarrow$$

$$e_m^{\ell} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \left[ \frac{\frac{m-2h}{2(\ell-\frac{1}{2})+1}}{2(\ell-\frac{1}{2})+1} \right] \cdots \left[ \frac{\frac{m-2h-\sum_{n=j+1}^{\ell-\frac{1}{2}}(2n+1)k_n}{2j+1}}{2j+1} \right] \cdots \left[ \frac{\frac{m-2h-\sum_{n=2}^{\ell-\frac{1}{2}}(2n+1)k_n}{3}}{3} \right] \left( m-2\left(h+\sum_{j=1}^{\ell-\frac{1}{2}}jk_j\right) \right).$$

## Dependence on $\mu$ , Kac determinant

Generating function given by

$$E^{\ell}(x) = \sum_{m=0}^{\infty} e_m^{\ell} x^m = \left(\sum_{i=0}^{\ell-\frac{1}{2}} \frac{x^{2i+1}}{1-x^{2i+1}}\right) \frac{1}{1-x^2} \prod_{j=0}^{\ell-\frac{1}{2}} \frac{1}{1-x^{2j+1}}.$$

**Theorem** 

$$\mathcal{D}_m^{\ell} = C_m^{\ell} \mu^{e_m^{\ell}} \prod_{j=0}^{\lfloor \frac{m}{2} \rfloor - 1} \left( 2\delta - 2j + \left( \ell + \frac{1}{2} \right)^2 \right)^{d_{m-2(j+1)}^{\ell}},$$

for some constant  $C_m^{\ell}$ .



## e.g. $\ell = 1/2$

$$e_m^{1/2} = \sum_{h=0}^{\left\lfloor \frac{m}{2} \right\rfloor} (m-2h) = \left(m - \left\lfloor \frac{m}{2} \right\rfloor\right) \left(\left\lfloor \frac{m}{2} \right\rfloor + 1\right)$$
$$= \begin{cases} \frac{1}{4}m(m+2); & m \text{ even} \\ \frac{1}{4}(m+1)^2; & m \text{ odd.} \end{cases}$$

and

$$d_{m-2(j+1)}^{1/2} = \left\lfloor \frac{m-2(j+1)+2}{2} \right\rfloor = \left\lfloor \frac{m-2j}{2} \right\rfloor = \left\lfloor \frac{m}{2} \right\rfloor - j.$$

⇔ conjecture of Dobrev, Doebner, Mrugalla.



### Future work

- $\bullet$  Invariant equations for  $\mathfrak{g}_{\ell}?$   $\longrightarrow$  forthcoming work of Aizawa, Segar, Kimura
- Infinite dimensional extensions?
  - $\longrightarrow \ell = 1/2$  work on Schrödinger-Virasoro algebras by Roger, Unterberger among others
  - $\longrightarrow \ell > 1/2$ ? Kimura's thesis?
- Quantum group analogues?
  - $\longrightarrow \ell = 1/2$  Dobrev, Doebner, Mrugalla
  - $\longrightarrow \ell > 1/2?$
- Other non-semisimple Lie algebras related to Schrödinger equation with potentials? e.g. "Newton-Hooke algebras" relate to the simple harmonic oscillator.
- $\bullet$  Development of more general representation theory related to  $\mathbb{Z}\text{-graded}$  algebras?

