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Infinitesimal transformations in d + 1 dimensional
space-time
(Negro, del Olmo, Rodriguez-Marco 1997; Martelli, Tachikawa 2010)

1
teyZ, ij=12....d

Rotation J; = —x,-% + X2
G i

Time translation H = %

. . o ) 8
Dilatation D = —2t5; — 2{x; B

Conformal transformation
_ 420 o
C=1tF +20tx5-

Pn,i:(_t)n{%-a n=0,1,...,2¢

o n =0 (translation)
o n =1 (Galilean boost)
o n =2 (acceleration) ...
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Infinitesimal transformations in d 4+ 1 dimensional
space-time
(Negro, del Olmo, Rodriguez-Marco 1997; Martelli, Tachikawa 2010)

1
teyZ, ij=12....d

. el o .
Rotation Jj; = —Xige T X5 (xi — xi + €xj, x; — Xj — €X;)

Time translation H = 2 (t — t +¢)

@ Dilatation D = —2t% - 2£X"8%,- (t — (1 —2¢e)t, x; —> (1 — 2le)x;)
@ Conformal transformation

C=t2Z +2txiz (t — (L+et)t, xi — (1 + 2let)x;)
® Pi=(-t)"2,n=0,1,...,2

o n =0 (translation) (x; — x; +¢)
o n=1 (Galilean boost) (x; — x; — €t)
(

o n =2 (acceleration) ... (x; — x; + €t?)
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Motivation and definitions

Non-trivial commutation relations

[D,H] = 2H, [D,C]=-2C, [C,H]=D, (s(2))

(S, Ike) = Sindje + 0jedic — Siedjx — djJie,  (so(d))

[H7 Pn,i] = _nPn—l,ia [D7 Pn,i] = 2(€ - n)Pn,fv [C7 Pn,i] = (2£ - n)Pn+1,i

[Jijs Pnk] = 0ikPnj — 0jkPni ({Pn} Abelian ideal) = non-semisimple.

Abelian = solvable = nontrivial maximal solvable ideal
(semisimple <> trivial maximal solvable ideal)
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Motivation and definitions

Central extensions

There are two types of central extensions:
1 7
(1) Foranyd, £ = E’%’%viv“'

[Pm,ia Pn,j] - Imn(sijM

where M is central, I,,, is antisymmetric.

(2) Ford=2,0=1,2,3,...
[Pm,ia Pn,j] - ,I\mneije

where © is central, I, is symmetric, € is antisymmetric.

(Bargmann 1954; Levy-Leblond 1972; Jackiw, Nair 2000;
Lukierski, Stichel, Zakrzewski 2006, 2007; Martelli, Tachikawa 2010)
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Motivation and definitions

i g o 1 .
Example: Schrodinger algebra (¢ = 3) with central
extension
(Niederer 1972; Dobrev, Doebner, Mrugalla 1997)

Differential operator realisation:

1
H:%7 D:f2t%*XkaiXk*§a
Cc— tza + txjaaxj + %mxkxk - ;

= Lie symmetries of (i) free Schrédinger equation (m pure imaginary);
(i) heat equation (m real)
V2 — om?Y — o
ot '
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Motivation and definitions

Invariant equations

Semisimple Lie algebras

1
(Kostant 1975; Dobrev 1988)

Canonical construction of invariant equations via a differential operator
realisation.

N
(Dobrev, Doebner, Mrugalla 1997)

I

Generalised to the (non-semisimple) centrally extended Schrodinger algebra.

This method requires knowledge of singular vectors.
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Motivation and definitions

Non-semisimple Lie algebras

Representation theory is well understood for semisimple Lie algebras (e.g. Weyl's
theorem, theory of weights, etc.).

Representation theory of non-semisimple Lie algebras remains largely undeveloped.

— In some cases it is possible to study highest weight submodules of the
Verma modules using a triangular decomposition of the Lie algebra
consistent with the triangular decomposition of its semisimple part.

— Conjecture (Dobrev, Doebner, Mrugalla 1997): A theory of highest weight
modules can be developed for arbitrary non-semisimple Lie algebras with
such a triangular decomposition.

— Requires knowledge of singular vectors.

= Motivation is twofold: (1) invariant equations, (2) highest weight modules
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Motivation and definitions

ge - Conformal Galilei algebra with central extension,
_ _ 1357

d—]., E— 25570159

(Aizawa, PSI, Kimura 2012):

Basis {C,D,H,P, | n=0,1,2,--- ,2¢}

[DaH]:2Ha [D,C]:—2C7 [CaH]:Dv
[H,P,] = =nPy_1, [D,Ppy]=2({—n)P,, [C,P,]=(2¢0—n)Ppi1,
['Dm, 'Dn] = Im,nMa Im,n = 5m+n,2e(*1)"’+€+%m!(2€ — m)l

Triangular decomposition:

o/ ={ H Po, P, Py )
92:{D7M}
EZZ{C, PZ+%a PZ+%7"'7P22}~
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Verma module

Let |0, i) be a highest weight vector of the Verma module V%, such that
Do, p)=616,p),  MIp)=pldp),  X|ou) =0, Xeg,

with V# being determined by U(g, ) |5, 1) .

= basis of V%" is

[_,
ChH e |0 | hokoki, kg € Zs

-1 -1
Eigenvalue of D corresponding to C" H £+ " |0, 1) is § —2h — Z(2j + 1)k;.
Jj=0 j=0
=3
= Define “level” m within V# by m =2h+> (2 + 1)k;.
j=0

ANZAMP 2012~ 10/
25
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Singular vectors

Notation
-}

For a fixed level m, since ko = m — 2h — "(2j + 1)k;, we find it convenient to
j=1

denote the basis vectors at level m by

-3 =3

_ b am—2h—3" % (2j+1)k; P

[ ki m) = Py ] Py 10 m),
j=1

with !j = (kl,k27' c ’szé)'
We have

S 9,
vir— @ Vi,

meZy

where V%" is the space spanned by the vectors |h, k; m) for fixed m.

ANZAMP 2012 11 /
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Singular vectors

Singular vectors

For m > 0, a singular vector |up,) is defined as an element of V2* satisfying

9Z|“m>:0’ ‘gz_:{H’ PO’ Plv"‘,Pe_%}.
Theorem

(1) 1f26 —2(q— 1)+ ({4 3)> =0 for g € Z" then the following is a singular
vector at level 2q :

q
ug) = (en € = P2, ) 16.1) € Vi

where o = 2((¢ — 3)1)2.

(2) In order for the vector |uy,) = Z a(h, k) |h, k; m) to be a singular vector, m
h.k
must be even, in which case the coefficients a(h, k) are unique up to an
overall factor.
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Singular vectors

Irreducible highest weight modules

= V%" has precisely one singular vector that exists at level 2q with

2
1 1
d=q—-1—=(0+=]) .
a-1-3(¢+3)
= V% contains the submodule /°* = U(g; ) |t2g) -

Using similar arguments to part (2) of the previous theorem, one may show that
there are no singular vectors in the quotient module Vo /[%#,
Theorem

The irreducible highest weight modules of g, for half odd integer £ with 1 #~ 0 are
listed as follows:

o Vomif§Lg—1-1(t+1)°,
o Von/Pmifs—q—1—1(+1),

where g € Z*. All modules are infinite dimensional.
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Kac determinant

Shapovalov form

The Shapovalov form (Shapovalov 1972) (1, ) on V%* is defined by setting

(16, 12) 116, 1)) = (6, pld, ) = 1,

and
(Alx), Bly)) = (Ix),w(A)Bly)), YIx),ly) € V* ABEeag,

where w is an algebra anti-automorphism defined by
w(P;) = Pa—j, w(C)=H, w(H)=C, w(D) =D, w(M)= M.

This form is symmetric when restricted to the basis {|h, k; m)} of VH.

ANZAMP 2012 14 /
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Kac determinant

Matrix of Shapovalov forms at level m

Given an ordered basis {v;} of V#, define a matrix whose entry in the ith row
and jth column is the number (v;, v;).

e.g. Vz‘s’“ has basis {vl =10,0;2) = Pf+% |0, )y, v =11,0;2) = C|9, u>}

S ()l ) (2 DI (s

NI

(vo,v1)  (v2,w2) (04 3)H*p? -6
The null space of such a matrix gives a set of null vectors, that are orthogonal to
the basis vectors.
@ Null vectors exist iff determinant is zero.
@ Singular vectors are null vectors.

@ Descendents of null vectors are also null vectors.

ANZAMP 2012 15 /
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Kac determinant

Kac determinant

The determinant of the matrix of Shapovalov forms is referred to as the Kac
determinant at level m, denoted D,.

eg. For m=2 D = —p2((¢ - )0+ 1226 + (£ + 1)?)
Recall the Theorem on existence of singular vectors:

If 26 —2(q — 1)+ (¢ + 1) =0 for g € Z* then there exists a singular vector at
level 2q.

Conjecture (Dobrev, Doebner, Mrugalla 1997): For £ = 1,

[3]-1
D1/2 Cpopt®n (25_2j+1)L%J—J

NI3

-
Il
o

where
o = im(m+2); meven
me 1(m+1)% modd.

ANZAMP 2012~ 16/
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Kac determinant

Dimension of Vo#

Vectors in the basis {|h, k; m)} are in one to one correspondence with the

restricted set of integer partitions of the integer m, with parts taken from the
subset of integers

{2}U{2j+1 |j:071,...7£—;}.

Vectors in the basis of V> can be enumerated by

m m—2h
OShS \‘EJ7 nggf%g \‘WJ’

—1
m—2h —2 (2n+ 1)k,
0<k 2nejia(2n +1) S
2j+1
_op_ N
...nglg{m 2h 25_2(2n+1)k,,J}.

ANZAMP 2012 17 /
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Kac determinant

Dimension of Vo#

= dim(V") = df, given by

21+1 3

=0 k=0 =0
e.g.

3] L3]) [=52) | =55
dr%v/z = Z 1, dr5n/2 _ Z 1,
ki=0

hJ Lm72h77k3J |_m—2h—7k3—5k2J
5 3

E2 5] =
ZED S SRNNFEES 35 > 1
h= —

k3= ko=0 k=0

ANZAMP 2012
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Kac determinant

Dimension of Vo#

Characterise d, by the generating function

1 o 1
74 _
F(X)_l—x2, 1 — x2%+1’
Jj=0

in the sense that the coefficients of the formal power series are the numbers d*,

i.e.
Ff(x) = Z d‘ x™.
m=0
eg.
gz [mE2 452 2m® + 33m? + 162m + 360
" 2 7T 360 ’
d3/? = m? +6m +12 J7/? — m* + 36m® + 442m? + 2124m + 5040 .
" 12 o 5040
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Kac determinant

Dependence on ¢

@ Singular vectors are null vectors & we count descendants

di_

= D contains the factor (25 —2(g—-1)+ (£ + %)2> zq , for every integer
g > 0 satisfying m > 2q.

@ For h< I, (h,k;m|h K'; m) ~ §"

= Diagonal entries contain polynomials in é of maximal degree

Z . . . . .
= Dy, is a polynomial in § of degree given by the number of C generators in all
basis vectors.

@ The number of vectors in the basis of V,3* containing C" must be 0% ,,.
where 02 is the number of integer partitions of n comprising only odd parts
no greater than 2/.
13)
= Number of C generators in all basis vectors is Z n03

m—2n-
n=0

P S Isaac (UQ) Representations of conformal Galilei algebras
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Kac determinant

Dependence on ¢

One may show

5] [3]-1
nOIZnZ—Qn - Z dm—2(]+1)7
n=0 j=0

RHS = sum of powers of the previously obtained factors.
= D¢ is of the form

ANZAMP 2012 21 /
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Kac determinant

Dependence on u

For a vector v = |h, k; m) in the basis v = {|h, k; m)} of V#, define the
u-weight of v, denoted p,, as

-4

py=m-—2 h—|—ijj

j=1
Note that p, is the sum of powers of all the P,-type generators appearing in v.
@ Forall v,w € ~, either (v,w) =0 or (v, w) = Ypuz(pvtew),
= D! = Z,uzvew Py,

o Letel = Zvew Pv, which gives the total number of P,-type generators that
occur in the basis 7.

= 1
m—2h—5 72 i)k -1

n=j+1 m—2n—3, % (2n+1)kn

m—2h T+ s
Ly LWZM > > 5

em = m—2|h+ Jkj .
h=0 Kk, 1=0 k=0 k=0 j=1
2

ANZAMP 2012~ 22/
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Kac determinant

Dependence on y, Kac determinant

Generating function given by

-1 -1
. =~ I X2t 1 . 1
— m __
Ef(x) =D epx" = Zl,xziﬂ 17X2H17X2j+1'
m=0 i=0 =0

Theorem

for some constant CY.
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eg. (=1/2

& = Sm-an= (o2 (3)+)

h=0
_ Im(m+2); meven
N $(m+1)% modd.

and

1/2 | m=2+1)+2| |[m=2|_ |m .
dm—2<f+1>—{ 2 - =15

< conjecture of Dobrev, Doebner, Mrugalla.
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Kac determinant

Future work

@ Invariant equations for g,? — forthcoming work of Aizawa, Segar, Kimura
@ Infinite dimensional extensions?

— ¢ =1/2 work on Schrddinger-Virasoro algebras by Roger, Unterberger
among others
— £ >1/2? Kimura's thesis?

@ Quantum group analogues?

— ¢ =1/2 Dobrev, Doebner, Mrugalla
— £>1/27

@ Other non-semisimple Lie algebras related to Schrodinger equation with
potentials? e.g. "Newton-Hooke algebras” relate to the simple harmonic
oscillator.

@ Development of more general representation theory related to Z-graded
algebras?
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