"[Moduli spaces] have also appeared in theoretical physics like string theory: many computations of path integrals are reduced to integrals of Chern classes on such moduli spaces."

Shing-Tung Yau

æ

A (1) > A (1) > A

Phants and Surfaces

Yi Huang

University of Melbourne

December 4th, 2012

・ロン ・回 と ・ ヨン ・ ヨン

The moduli space $\mathcal{M}(S)$ of a surface S of genus g and with n punctures is:

{equivalence classes of Riemann surfaces homeomorphic to S}

・ 同・ ・ ヨ・

The moduli space $\mathcal{M}(S)$ of a surface S of genus g and with n punctures is:

{equivalence classes of Riemann surfaces homeomorphic to S}

How can we study it?

A (1) > (1) > (1)

The moduli space $\mathcal{M}(S)$ of a surface S of genus g and with n punctures is:

{equivalence classes of Riemann surfaces homeomorphic to S}

How can we study it?

- build every Riemann surface.
- identify biholomorphic ones.

A⊒ ▶ ∢ ∃

The anatomy of a Riemann surface:

• A Riemann surface $R \Rightarrow$ a unique hyperbolic surface R_h .

<⊡> < ⊒>

The anatomy of a Riemann surface:

- A Riemann surface $R \Rightarrow$ a unique hyperbolic surface R_h .
- ► Simple loops on hyperbolic surfaces ⇒ unique geodesics.

The anatomy of a Riemann surface:

- A Riemann surface $R \Rightarrow$ a unique hyperbolic surface R_h .
- ► Simple loops on hyperbolic surfaces ⇒ unique geodesics.
- Cut along these geodesics \Rightarrow hyperbolic pairs of pants.

So, how can we generate every Riemann surface?

< □ > < □ > < □ > < □ > < □ > .

- So, how can we generate every Riemann surface?
 - There's a unique pair of pants for any three boundary lengths.

< **₩** ► < **⇒** ►

글 > 글

So, how can we generate every Riemann surface?

- There's a unique pair of pants for any three boundary lengths.
- Can vary these lengths, and

周▶ 《 ≧ ▶

So, how can we generate every Riemann surface?

- There's a unique pair of pants for any three boundary lengths.
- Can vary these lengths, and
- vary the gluing.

Teichmüller space

Take geodesics $\{\gamma_1, \ldots, \gamma_{3g-3+n}\}$ that decompose R_h into pairs of pants. For each γ_i , we have:

- \mathbb{R}^+ possible lengths ℓ_i , and
- \mathbb{R} possible twists τ_i (keep track of some winding number)

Teichmüller space

Take geodesics $\{\gamma_1, \ldots, \gamma_{3g-3+n}\}$ that decompose R_h into pairs of pants. For each γ_i , we have:

- \mathbb{R}^+ possible lengths ℓ_i , and
- \mathbb{R} possible twists τ_i (keep track of some winding number) We get the Teichmüller space

$$\mathcal{T}(S) = (\mathbb{R}_+ \times \mathbb{R})^{3g-3+n}.$$

The same hyperbolic surface appears infinitely many times in Teichmüller space, and the identification map

$$\mathcal{T}(S)
ightarrow \mathcal{M}(S)$$

comes from a group action.

・ 同・ ・ ヨ・

The same hyperbolic surface appears infinitely many times in Teichmüller space, and the identification map

$$\mathcal{T}(S)
ightarrow \mathcal{M}(S)$$

comes from a group action.

The Weil-Petersson 2-form

$$\Omega_{WP} := \mathrm{d}\ell_1 \wedge \mathrm{d}\tau_1 + \ldots + \mathrm{d}\ell_{3g-3+n} \wedge \mathrm{d}\tau_{3g-3+n}$$

is invariant under this group action, and makes $\mathcal{M}(S)$ a symplectic manifold.

Tweaking the boundary

Instead of uniformizing to have cusps at the punctures, we can ask for geodesics with specified boundary lengths $\vec{L} = (L_1, \ldots, L_n)$.

Tweaking the boundary

Instead of uniformizing to have cusps at the punctures, we can ask for geodesics with specified boundary lengths $\vec{L} = (L_1, \ldots, L_n)$.

► Repeat previous steps ⇒ a new 2-form $\Omega_{WP}(\vec{L})$ on $\mathcal{M}(S)$ for each \vec{L} .

Tweaking the boundary

Instead of uniformizing to have cusps at the punctures, we can ask for geodesics with specified boundary lengths $\vec{L} = (L_1, \ldots, L_n)$.

- Repeat previous steps \Rightarrow a new 2-form $\Omega_{WP}(\vec{L})$ on $\mathcal{M}(S)$ for each \vec{L} .
- The volume of M(S) for Ω_W(*L*)^(3g-3+n) is a rational polynomial in π² and L²_i!

Tweaking the boundary

Instead of uniformizing to have cusps at the punctures, we can ask for geodesics with specified boundary lengths $\vec{L} = (L_1, \ldots, L_n)$.

- Repeat previous steps \Rightarrow a new 2-form $\Omega_{WP}(\vec{L})$ on $\mathcal{M}(S)$ for each \vec{L} .
- The volume of M(S) for Ω_W(L)^(3g-3+n) is a rational polynomial in π² and L²_i!
- Shove the coefficients in a generating function and exponentiate to get a solution to the KdV equations!

What happens if we specify cone-angles at the punctures instead?

(本部) (本語) (本語)

What happens if we specify cone-angles at the punctures instead?

Up to cone-angle π , everything we've talked about still holds true.

What happens between π and 2π ?

▲□→ ▲圖→ ▲厘→ ▲厘→

What happens between π and 2π ?

We lose (unique) geodesic representatives.

æ

≣ >

A (1) > (1) > (1)

What happens between π and 2π ?

We lose (unique) geodesic representatives.

A ►

To fix this: *push past* the cone-point.

When cutting surface along given broken geodesics, extend (and sometimes retract) our surface to obtain *phantom pants* or *phants* with geodesic boundary.

・ロト ・回ト ・ヨト ・ヨト

► Teichmüller spaces T(S) lives in the representation variety R(π₁(S), PSL₂(ℝ)).

→ 御 → → 注 → → 注 →

- ► Teichmüller spaces T(S) lives in the representation variety R(π₁(S), PSL₂(ℝ)).

▲御▶ ▲唐▶ ▲唐▶

- ► Teichmüller spaces T(S) lives in the representation variety R(π₁(S), PSL₂(ℝ)).
- Weil-Petersson form Ω_{WP} is a cup-product on H¹(π₁(S), sl₂(ℝ)).

▲御▶ ▲唐▶ ▲唐▶

- ► Teichmüller spaces T(S) lives in the representation variety R(π₁(S), PSL₂(ℝ)).
- Weil-Petersson form Ω_{WP} is a cup-product on H¹(π₁(S), sl₂(ℝ)).

Our phants coordinates are very representation theoretic, so these coordinates will produce the "correct" Weil-Petersson form.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶