
Riemann Surfaces
The Problem with Cone Points

Phants!

“[Moduli spaces] have also appeared in theoretical physics like
string theory: many computations of path integrals are reduced to
integrals of Chern classes on such moduli spaces. ”

Shing-Tung Yau
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The moduli space M(S) of a surface S of genus g and with n
punctures is:

{equivalence classes of Riemann surfaces homeomorphic to S}

How can we study it?

I build every Riemann surface.

I identify biholomorphic ones.
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The anatomy of a Riemann surface:

I A Riemann surface R ⇒ a unique hyperbolic surface Rh.

I Simple loops on hyperbolic surfaces ⇒ unique geodesics.

I Cut along these geodesics ⇒ hyperbolic pairs of pants.
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So, how can we generate every Riemann surface?

I There’s a unique pair of pants for any three boundary lengths.

I Can vary these lengths, and

I vary the gluing.
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Teichmüller space

Take geodesics {γ1, . . . , γ3g−3+n} that decompose Rh into pairs of
pants. For each γi , we have:

I R+ possible lengths `i , and

I R possible twists τi (keep track of some winding number)

We get the Teichmüller space

T (S) = (R+ × R)3g−3+n.
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The same hyperbolic surface appears infinitely many times in
Teichmüller space, and the identification map

T (S)→M(S)

comes from a group action.

The Weil-Petersson 2-form

ΩWP := d`1 ∧ dτ1 + . . .+ d`3g−3+n ∧ dτ3g−3+n

is invariant under this group action, and makes M(S) a symplectic
manifold.
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Tweaking the boundary

Instead of uniformizing to have cusps at the punctures, we can ask
for geodesics with specified boundary lengths ~L = (L1, . . . , Ln).

I Repeat previous steps
⇒ a new 2-form ΩWP(~L) on M(S) for each ~L.

I The volume of M(S) for ΩW (~L)(3g−3+n) is a rational
polynomial in π2 and L2i !

I Shove the coefficients in a generating function and
exponentiate to get a solution to the KdV equations!
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What happens if we specify cone-angles at the punctures instead?

Up to cone-angle π, everything we’ve talked about still holds true.
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What happens between π and 2π?

We lose (unique) geodesic representatives.
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To fix this: push past the cone-point.

When cutting surface along given broken geodesics, extend (and
sometimes retract) our surface to obtain phantom pants or phants
with geodesic boundary.
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The upshot: we can now define length and twist parameters using
these phants pieces!

I Teichmüller spaces T (S) lives in the representation variety
R(π1(S),PSL2(R)).

I T[φ]R(π1(S),PSL2(R)) ∼= H1(π1(S), sl2(R)Ad◦φ).

I Weil-Petersson form ΩWP is a cup-product on
H1(π1(S), sl2(R)).

Our phants coordinates are very representation theoretic, so these
coordinates willl produce the “correct” Weil-Petersson form.
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