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Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

The XY model
XY model on graph G = (V ,E):

I Configuration space is (S1)V

I Gibbs measure (at temperature T )
dµ(s) ∝ exp(−H(s)/T )

∏
v∈V

dsv

I dsv is uniform measure on S1

I Hamiltonian is O(2) symmetric

H(s) = −J
∑
uv∈E

su · sv

On two-dimensional lattices:
I Mermin-Wagner Theorem forbids magnetic ordering at T > 0
I Ferromagnetic model has Kosterlitz-Thouless transition:

I For all T ≤ Tc

E(s0 · sx) ∼ |x |−η(T ) as|x | → ∞
I Quasi-long range order
I η(T ) is an increasing function of T on [0,Tc ]
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Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)

I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)
I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)

I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)
I A = 0 gives ferromagnetic XY model

I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)
I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model

I Square lattice
I A = (0, 1

2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face
I Triangular lattice

I A = ( 1
2 ,

1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)
I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Josephson Junction Arrays
Josephson Junction Array in a uniform transverse magnetic field

I Planar graph G = (V ,E)
I Nodes are superconductors
I Edges are Josephson junctions
I Magnetic vector potential A

I Modelled by the Hamiltonian

H(θ) = −
∑

uv∈E

cos(θu − θv − Auv )

I θu ∈ [0, 2π] superconductor order parameter
I Auv = 2π

∫ v
u A · dl

I “Uniformly frustrated XY model” (Villain)
I A = 0 gives ferromagnetic XY model
I
∮

face A · dl = π gives Fully-Frustrated XY model
I Square lattice

I A = (0, 1
2 x , 0) gives Auv = 0, 0, 0, π along four edges of each face

I Triangular lattice
I A = ( 1

2 ,
1
2 x , 0) which gives Auv = π on every edge



Novel Phase Transitions in XY Antiferromagnets on Plane Triangulations

Ground states of XY model
I Ferromagnetic couplings (J = +1)

I Ground states totally ordered
I Generated by SO(2)

I Antiferromagnetic couplings (J = −1)

I Bipartite graphs

I Ground states ordered on each sublattice
I Every edge is satisfied
I Ground states again generated by SO(2)

I Triangular lattice

I Ground states again ordered on each sublattice
I No edge is satisfied
I Each face is frustrated
I Ground states with distinct chiralities not

related by rotations
I Ground states generated by O(2)
I Additional Z2 ∼= O(2)/SO(2) degeneracy

I Same ground states arise on any Eulerian plane triangulation
I Square-lattice FFXY also has same ground state degeneracies
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Phase transitions

For both the square-lattice FFXY and triangular-lattice AFXY models:
I At low temperatures:

I Long-range chiral order
I Quasi long-range magnetic order on each sublattice

I At high temperatures:
I The system is disordered

I Q: Do chiral and magnetic transitions occur at the same T?
I Significant controversy from ∼ 1983 until ∼ 2005
I Now general consensus that:

I Chiral order parameter undergoes Ising transition at Tc
I Spin order parameter undergoes Kosterlitz-Thouless transition at Ts
I Ts < Tc

I What happens on other Eulerian triangulations?
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Order parameters

Consider an Eulerian plane triangulation

I Three sublattices A,B,C ⊂ V
I Each sublattice S has its own magnetization

MS =
1
|S|
∑
v∈S

sv

I The chiral order parameter is

Mc =
1

#faces

∑
ijk∈faces

sgn[sin(θi−θj )+sin(θj−θk )+sin(θk−θi )],

+ + +

+ + +

+ + +

–––

–––

–––
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Union Jack lattice
I Eulerian triangulation which is also a Laves lattice

I Sublattice A4 not equivalent to sublattices B8 and C8
I Same ground state degeneracy as triangular lattice AFXY model
I Experimentally realize AFXY model via Josephson-junction array

I With same vector potential as triangular lattice

I Chiral transition is again Ising:
I Binder ratio Qc = 〈M2

c 〉2/〈M4
c 〉

I Fit Qc to finite-size scaling ansatz

Qc = Q∗c +a1t L1/ν+a2t2L2/ν+. . . , t := (T−Tc)

I Gives Tc = 0.4316(1), and ν = 1.01(1)

I Fit chiral susceptibility χc = |V |〈M2
c 〉 to

χc = L2−η
(

a0 + a1t L1/ν + a2t2L2/ν + . . .
)

I Gives η = 0.252(6)

I Compare exact Ising values ν = 1 and η = 1/4
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Sublattice spins – Low temperature

A4, B8 and C8 are all quasi-long range (QLR) ordered at low T

I We observe χ ∼ L2−η(T )

I B8 and C8 become disordered at Ts = 0.639(2)

I Via KT transition
I Ts > Tc (opposite of � and 4 FFXY cases)
I A4 disorders at Tc = 0.4316(1)
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Transition on A4
I Magnetic transition of A4 spins at Tc appears to be Ising

I Very good fits of Binder parameter QA4 = 〈M2
A4
〉2/〈M4

A4
〉 to

QA4 = Q∗A4 + a1t L1/ν + a2t2L2/ν + . . . ,

I Ising transition from disorder to QLR-order!
I Similar Ising transition very recently observed for model

H(θ) = −
∑

uv∈E

(1−∆) cos(θu − θv ) + ∆ cos(2θu − 2θv )

I Shi, Lamacraft, & Fendley, Phys. Rev. Lett. 107, 240601 (2011).

B8 and C8 undergo Ising transition at Tc
Separates two QLR-ordered phases
(CB8 specific heat on B8)
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Bisected hexagonal lattice

I There are three Laves lattices which are Eulerian triangulations:
I Triangular lattice [63]
I Union Jack lattice [4, 82]
I Bisected-hexagonal lattice [4, 6, 12]

I Ising chiral transition at Tc = 0.39137(8)

I A4, B6 and C12 disorder at Ts = 0.747(2)

I KT transition

I A4 and B6 have Ising transition at Tc
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Discussion

C6

B6

A6

Chiral

Tc

Ts

Tri

C8

B8

A4

Chiral

TsTc

UJ

C12

B6

A4

Chiral

TsTc

BH

I A4 disorders at Tc on UJ
I Ts > Tc on UJ and BJ
I Ts < Tc on 4 and �

I Tc(Tri) > Tc(UJ) > Tc(BH)

I Ts(Tri) < Ts(UJ) < Ts(BH)

I For all three Eulerian Laves triangulations the AFXY model has a
distinct Ising chiral transition

I Should be generic on all Eulerian plane triangulations
I Magnetic transitions strongly dependent on specific lattice

topology
I We observe Ising magnetic transition in the standard XY

antiferromagnet
I Both QLR-ordered to disordered and QLR-ordered to QLR-ordered


