Tim Garoni

School of Mathematical Sciences Monash University

Australian Government

Australian Research Council

Jian-Ping Lv, TG, and Youjin Deng, "Novel phase transitions in XY Antiferromagnets on Plane Triangulations"

The XY model

XY model on graph G = (V, E):

- Configuration space is $(S^1)^V$
- ► Gibbs measure (at temperature *T*) $d\mu(\mathbf{s}) \propto \exp(-H(\mathbf{s})/T) \prod_{\nu \in V} d\mathbf{s}_{\nu}$
 - $d\mathbf{s}_v$ is uniform measure on S^1
 - Hamiltonian is O(2) symmetric

$$H(\mathbf{s}) = -J\sum_{uv\in E}\mathbf{s}_u\cdot\mathbf{s}_v$$

The XY model

XY model on graph G = (V, E):

- Configuration space is $(S^1)^V$
- ► Gibbs measure (at temperature *T*) $d\mu(\mathbf{s}) \propto \exp(-H(\mathbf{s})/T) \prod_{\nu \in V} d\mathbf{s}_{\nu}$
 - d**s**_v is uniform measure on S^1
 - Hamiltonian is O(2) symmetric

$$H(\mathbf{s}) = -J \sum_{uv \in E} \mathbf{s}_u \cdot \mathbf{s}_v$$

On two-dimensional lattices:

- Mermin-Wagner Theorem forbids magnetic ordering at T > 0
- Ferromagnetic model has Kosterlitz-Thouless transition:
 - For all $T \leq T_c$

 $\mathbb{E}(\mathbf{S}_0 \cdot \mathbf{S}_x) \sim |x|^{-\eta(T)} \qquad \mathrm{as}|x|
ightarrow \infty$

- Quasi-long range order
- $\eta(T)$ is an increasing function of T on $[0, T_c]$

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

▶
$$\theta_u \in [0, 2\pi]$$
 superconductor order parameter

•
$$A_{uv} = 2\pi \int_u^v \mathbf{A} \cdot d\mathbf{I}$$

Josephson Junction Array in a uniform transverse magnetic field

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

• $\theta_u \in [0, 2\pi]$ superconductor order parameter

•
$$A_{uv} = 2\pi \int_{u}^{v} \mathbf{A} \cdot d\mathbf{I}$$

"Uniformly frustrated XY model" (Villain)

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

- $\theta_u \in [0, 2\pi]$ superconductor order parameter
- $A_{uv} = 2\pi \int_{u}^{v} \mathbf{A} \cdot d\mathbf{I}$
- "Uniformly frustrated XY model" (Villain)
- ► **A** = **0** gives ferromagnetic XY model

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

- $\theta_u \in [0, 2\pi]$ superconductor order parameter
- $A_{uv} = 2\pi \int_u^v \mathbf{A} \cdot d\mathbf{I}$
- "Uniformly frustrated XY model" (Villain)
- ► **A** = **0** gives ferromagnetic XY model
- $\oint_{\text{face}} \mathbf{A} \cdot d\mathbf{I} = \pi$ gives Fully-Frustrated XY model

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

- ► $\theta_u \in [0, 2\pi]$ superconductor order parameter
- $A_{uv} = 2\pi \int_u^v \mathbf{A} \cdot d\mathbf{I}$
- "Uniformly frustrated XY model" (Villain)
- ► **A** = **0** gives ferromagnetic XY model
- $\oint_{\text{face}} \mathbf{A} \cdot d\mathbf{I} = \pi$ gives Fully-Frustrated XY model
- Square lattice
 - $\mathbf{A} = (0, \frac{1}{2}x, 0)$ gives $A_{uv} = 0, 0, 0, \pi$ along four edges of each face

Josephson Junction Array in a uniform transverse magnetic field

- Planar graph G = (V, E)
 - Nodes are superconductors
 - Edges are Josephson junctions
 - Magnetic vector potential A
- Modelled by the Hamiltonian

$$H(\theta) = -\sum_{uv \in E} \cos(\theta_u - \theta_v - A_{uv})$$

- ► $\theta_u \in [0, 2\pi]$ superconductor order parameter
- $A_{uv} = 2\pi \int_u^v \mathbf{A} \cdot d\mathbf{I}$
- "Uniformly frustrated XY model" (Villain)
- ► **A** = **0** gives ferromagnetic XY model
- $\oint_{\text{face}} \mathbf{A} \cdot d\mathbf{I} = \pi$ gives Fully-Frustrated XY model
- Square lattice

• $\mathbf{A} = (0, \frac{1}{2}x, 0)$ gives $A_{uv} = 0, 0, 0, \pi$ along four edges of each face

Triangular lattice

• $\mathbf{A} = (\frac{1}{2}, \frac{1}{2}x, 0)$ which gives $A_{uv} = \pi$ on every edge

- Ferromagnetic couplings (J = +1)
 - Ground states totally ordered
 - Generated by SO(2)

- ► Ferromagnetic couplings (*J* = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)

- ► Ferromagnetic couplings (*J* = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is *frustrated*

- Ferromagnetic couplings (J = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is *frustrated*
 - Ground states with distinct *chiralities* not related by rotations

- Ferromagnetic couplings (J = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is *frustrated*
 - Ground states with distinct *chiralities* not related by rotations

- ► Ferromagnetic couplings (*J* = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is frustrated
 - Ground states with distinct *chiralities* not related by rotations
 - Ground states generated by O(2)
 - Additional $\mathbb{Z}_2 \cong O(2)/SO(2)$ degeneracy

Ground states of XY model

- ► Ferromagnetic couplings (*J* = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is frustrated
 - Ground states with distinct *chiralities* not related by rotations
 - Ground states generated by O(2)
 - Additional $\mathbb{Z}_2 \cong O(2)/SO(2)$ degeneracy

Same ground states arise on any Eulerian plane triangulation

- ► Ferromagnetic couplings (*J* = +1)
 - Ground states totally ordered
 - Generated by SO(2)
- Antiferromagnetic couplings (J = -1)
 - Bipartite graphs
 - Ground states ordered on each sublattice
 - Every edge is satisfied
 - Ground states again generated by SO(2)
 - Triangular lattice
 - Ground states again ordered on each sublattice
 - No edge is satisfied
 - Each face is frustrated
 - Ground states with distinct *chiralities* not related by rotations
 - Ground states generated by O(2)
 - Additional $\mathbb{Z}_2 \cong O(2)/SO(2)$ degeneracy
 - Same ground states arise on any Eulerian plane triangulation
 - Square-lattice FFXY also has same ground state degeneracies

- At low temperatures:
 - Long-range chiral order
 - Quasi long-range magnetic order on each sublattice
- At high temperatures:
 - The system is disordered

- At low temperatures:
 - Long-range chiral order
 - Quasi long-range magnetic order on each sublattice
- At high temperatures:
 - The system is disordered
- ▶ Q: Do chiral and magnetic transitions occur at the same *T*?

- At low temperatures:
 - Long-range chiral order
 - Quasi long-range magnetic order on each sublattice
- At high temperatures:
 - The system is disordered
- ▶ Q: Do chiral and magnetic transitions occur at the same *T*?
- $\blacktriangleright\,$ Significant controversy from \sim 1983 until \sim 2005

- At low temperatures:
 - Long-range chiral order
 - Quasi long-range magnetic order on each sublattice
- At high temperatures:
 - The system is disordered
- ▶ Q: Do chiral and magnetic transitions occur at the same *T*?
- $\blacktriangleright\,$ Significant controversy from \sim 1983 until \sim 2005
- Now general consensus that:
 - Chiral order parameter undergoes Ising transition at T_c
 - Spin order parameter undergoes Kosterlitz-Thouless transition at T_s
 - $\bullet \ T_{\rm s} < T_{\rm c}$

- At low temperatures:
 - Long-range chiral order
 - Quasi long-range magnetic order on each sublattice
- At high temperatures:
 - The system is disordered
- ▶ Q: Do chiral and magnetic transitions occur at the same *T*?
- $\blacktriangleright\,$ Significant controversy from \sim 1983 until \sim 2005
- Now general consensus that:
 - Chiral order parameter undergoes Ising transition at T_c
 - Spin order parameter undergoes Kosterlitz-Thouless transition at T_s
 - $\bullet \ T_{\rm s} < T_{\rm c}$
- What happens on other Eulerian triangulations?

Order parameters

Consider an Eulerian plane triangulation

- ▶ Three sublattices *A*, *B*, *C* ⊂ *V*
- Each sublattice S has its own magnetization

$$M_{S} = rac{1}{|S|} \sum_{v \in S} \mathbf{s}_{v}$$

The chiral order parameter is

4

I,

$$M_{\rm c} = rac{1}{\# {
m faces}} \sum_{ijk \in {
m faces}} {
m sgn}[{
m sin}(heta_i - heta_j) + {
m sin}(heta_j - heta_k) + {
m sin}(heta_k - heta_i)]$$

Eulerian triangulation which is also a Laves lattice

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice
- Chiral transition is again Ising:

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice
- Chiral transition is again Ising:
- Binder ratio $Q_{\rm c} = \langle M_{\rm c}^2 \rangle^2 / \langle M_{\rm c}^4 \rangle$

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice
- Chiral transition is again Ising:
- Binder ratio $Q_{\rm c} = \langle M_{\rm c}^2 \rangle^2 / \langle M_{\rm c}^4 \rangle$
- ► Fit *Q*_c to finite-size scaling ansatz

$$Q_{\rm c} = Q_{\rm c}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots, \qquad t := (T - T_{\rm c})^2$$

• Gives $T_c = 0.4316(1)$, and $\nu = 1.01(1)$

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice
- Chiral transition is again Ising:
- Binder ratio $Q_{\rm c} = \langle M_{\rm c}^2 \rangle^2 / \langle M_{\rm c}^4 \rangle$
- ► Fit *Q*_c to finite-size scaling ansatz

$$Q_{\rm c} = Q_{\rm c}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots, \qquad t := (T - T_{\rm c})^2$$

- Gives $T_c = 0.4316(1)$, and $\nu = 1.01(1)$
- Fit chiral susceptibility $\chi_{\rm c} = |V| \langle M_{\rm c}^2 \rangle$ to

$$\chi_{c} = \mathcal{L}^{2-\eta} \left(a_{0} + a_{1} t \, \mathcal{L}^{1/\nu} + a_{2} t^{2} \mathcal{L}^{2/\nu} + \ldots \right)$$

• Gives $\eta = 0.252(6)$

- Eulerian triangulation which is also a Laves lattice
- Sublattice A₄ not equivalent to sublattices B₈ and C₈
- Same ground state degeneracy as triangular lattice AFXY model
- Experimentally realize AFXY model via Josephson-junction array
 - With same vector potential as triangular lattice
- Chiral transition is again Ising:
- Binder ratio $Q_{\rm c} = \langle M_{\rm c}^2 \rangle^2 / \langle M_{\rm c}^4 \rangle$
- ► Fit *Q*_c to finite-size scaling ansatz

$$Q_{\rm c} = Q_{\rm c}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots, \qquad t := (T - T_{\rm c})^2$$

- Gives $T_c = 0.4316(1)$, and $\nu = 1.01(1)$
- Fit chiral susceptibility $\chi_{\rm c} = |V| \langle M_{\rm c}^2 \rangle$ to

$$\chi_{\rm c} = L^{2-\eta} \left(a_0 + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \ldots \right)$$

• Gives $\eta = 0.252(6)$

• Compare exact Ising values $\nu = 1$ and $\eta = 1/4$

 A_4 , B_8 and C_8 are all quasi-long range (QLR) ordered at low T

• We observe $\chi \sim L^{2-\eta(T)}$

- We observe $\chi \sim L^{2-\eta(T)}$
- B_8 and C_8 become disordered at $T_s = 0.639(2)$
 - Via KT transition

- We observe $\chi \sim L^{2-\eta(T)}$
- B_8 and C_8 become disordered at $T_s = 0.639(2)$
 - Via KT transition
- $T_{\rm s} > T_{\rm c}$ (opposite of \Box and \triangle FFXY cases)

- We observe $\chi \sim L^{2-\eta(T)}$
- B_8 and C_8 become disordered at $T_s = 0.639(2)$
 - Via KT transition
- $T_{\rm s} > T_{\rm c}$ (opposite of \Box and \triangle FFXY cases)
- A_4 disorders at $T_c = 0.4316(1)$

 A_4 , B_8 and C_8 are all quasi-long range (QLR) ordered at low T

- We observe $\chi \sim L^{2-\eta(T)}$
- B_8 and C_8 become disordered at $T_s = 0.639(2)$
 - Via KT transition
- $T_{\rm s} > T_{\rm c}$ (opposite of \Box and \triangle FFXY cases)
- A_4 disorders at $T_c = 0.4316(1)$

Sublattice magnetizations disorder at different temperatures

- Magnetic transition of A₄ spins at T_c appears to be Ising
 - Very good fits of Binder parameter $Q_{A_4} = \langle M_{A_4}^2 \rangle^2 / \langle M_{A_4}^4 \rangle$ to

$$Q_{A_4} = Q_{A_4}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots,$$

- Magnetic transition of A₄ spins at T_c appears to be Ising
 - Very good fits of Binder parameter $Q_{A_4} = \langle M_{A_4}^2 \rangle^2 / \langle M_{A_4}^4 \rangle$ to

$$Q_{A_4} = Q_{A_4}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots,$$

Ising transition from disorder to QLR-order!

- Magnetic transition of A₄ spins at T_c appears to be Ising
 - Very good fits of Binder parameter $Q_{A_4} = \langle M_{A_4}^2 \rangle^2 / \langle M_{A_4}^4 \rangle$ to

$$Q_{A_4} = Q_{A_4}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots,$$

- Ising transition from disorder to QLR-order!
- Similar Ising transition very recently observed for model

$$H(\theta) = -\sum_{uv \in E} (1 - \Delta) \cos(\theta_u - \theta_v) + \Delta \cos(2\theta_u - 2\theta_v)$$

Shi, Lamacraft, & Fendley, Phys. Rev. Lett. 107, 240601 (2011).

- Magnetic transition of A₄ spins at T_c appears to be Ising
 - Very good fits of Binder parameter $Q_{A_4} = \langle M_{A_4}^2 \rangle^2 / \langle M_{A_4}^4 \rangle$ to

$$Q_{A_4} = Q_{A_4}^* + a_1 t \, L^{1/\nu} + a_2 t^2 L^{2/\nu} + \dots,$$

- Ising transition from disorder to QLR-order!
- Similar Ising transition very recently observed for model

$$H(heta) = -\sum_{uv\in E} (1-\Delta)\cos(heta_u - heta_v) + \Delta\cos(2 heta_u - 2 heta_v)$$

Shi, Lamacraft, & Fendley, Phys. Rev. Lett. 107, 240601 (2011).

 B_8 and C_8 undergo Ising transition at T_c Separates two QLR-ordered phases (C_{B_8} specific heat on B_8)

Bisected hexagonal lattice

> There are three Laves lattices which are Eulerian triangulations:

- Triangular lattice [6³]
- Union Jack lattice [4, 8²]
- Bisected-hexagonal lattice [4, 6, 12]

Bisected hexagonal lattice

There are three Laves lattices which are Eulerian triangulations:

- Triangular lattice [6³]
- Union Jack lattice [4, 8²]
- Bisected-hexagonal lattice [4, 6, 12]

• Ising chiral transition at $T_c = 0.39137(8)$

Bisected hexagonal lattice

There are three Laves lattices which are Eulerian triangulations:

- Triangular lattice [6³]
- Union Jack lattice [4, 8²]
- Bisected-hexagonal lattice [4, 6, 12]

- Ising chiral transition at $T_c = 0.39137(8)$
- A_4 , B_6 and C_{12} disorder at $T_s = 0.747(2)$
 - KT transition

Bisected hexagonal lattice

There are three Laves lattices which are Eulerian triangulations:

- Triangular lattice [6³]
- Union Jack lattice [4, 8²]
- Bisected-hexagonal lattice [4, 6, 12]

- Ising chiral transition at $T_c = 0.39137(8)$
- A_4 , B_6 and C_{12} disorder at $T_s = 0.747(2)$
 - KT transition
- A_4 and B_6 have Ising transition at T_c

Discussion

- For all three Eulerian Laves triangulations the AFXY model has a distinct Ising chiral transition
 - Should be generic on all Eulerian plane triangulations
- Magnetic transitions strongly dependent on specific lattice topology
- We observe Ising magnetic transition in the standard XY antiferromagnet
 - Both QLR-ordered to disordered and QLR-ordered to QLR-ordered