Numerical space-times near space-like and null infinity

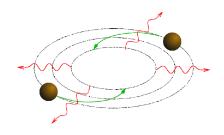
Jörg Frauendiener

Department of Mathematics and Statistics University of Otago

Lorne, 3. 12. 2012

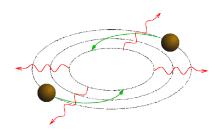
The defining problem of Numerical Relativity

The defining problem of Numerical Relativity



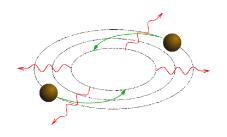
- Two compact objects (BH/NS) in gravitational interaction
- Inspiraling orbits due to gravitational radition

The defining problem of Numerical Relativity



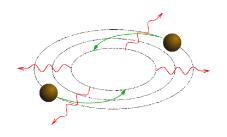
- Two compact objects (BH/NS) in gravitational interaction
- Inspiraling orbits due to gravitational radition
- Compute the emitted waves

The defining problem of Numerical Relativity



- Two compact objects (BH/NS) in gravitational interaction
- Inspiraling orbits due to gravitational radition
- Compute the emitted waves
- Can be partly handled by approximations

The defining problem of Numerical Relativity



- Two compact objects (BH/NS) in gravitational interaction
- Inspiraling orbits due to gravitational radition
- Compute the emitted waves
- Can be partly handled by approximations
- But computer simulation is necessary for details

Successes

Numerical Relativity has had several breakthroughs in the last decade

- ▶ Binary black-hole problem can be considered as solved
- Long-term stable evolution of full 3D scenarios
- Gravitational wave-form computations are possible for many different parameter sets
- ► Gravitational wave recoil ('kicks') can be considered as theoretical prediction to be verified by observations (see Camossa et al)

Remaining problems

Yet, some largely unexplored issues remain

- Insights into the formation of singularities and horizons
- Cosmic censorship
- The outer boundary

Remaining problems

Yet, some largely unexplored issues remain

- Insights into the formation of singularities and horizons
- Cosmic censorship
- ► The outer boundary

The physical problem

▶ What is the signal received by an antenna?

- What is the signal received by an antenna?
- ▶ Maxwell theory: 1/r part of electromagnetic field

- What is the signal received by an antenna?
- ▶ Maxwell theory: 1/r part of electromagnetic field
- Einstein theory: 1/r' part of gravitational field (Weyl curvature)

- What is the signal received by an antenna?
- ▶ Maxwell theory: 1/r part of electromagnetic field
- ▶ Einstein theory: '1/r' part of gravitational field (Weyl curvature)
- ▶ BUT: non-linear theory, so modes do not separate

- What is the signal received by an antenna?
- ▶ Maxwell theory: 1/r part of electromagnetic field
- ▶ Einstein theory: '1/r' part of gravitational field (Weyl curvature)
- ▶ BUT: non-linear theory, so modes do not separate
- Gravitational waves are well defined only at infinity

- What is the signal received by an antenna?
- ▶ Maxwell theory: 1/r part of electromagnetic field
- ▶ Einstein theory: '1/r' part of gravitational field (Weyl curvature)
- ▶ BUT: non-linear theory, so modes do not separate
- Gravitational waves are well defined only at infinity
- Accurate simulations need to take the limit $r \to \infty$

R. Penrose

Ignore the scale of space-time, focus on its shape (locally)

R. Penrose

Ignore the scale of space-time, focus on its shape (locally)

Mathematically, regard physical metric g_{ab} defined "up to scalings"

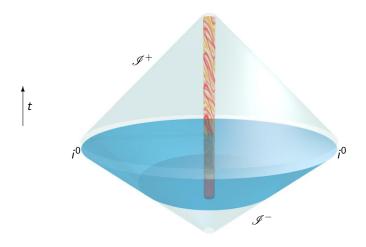
$$g_{ab}\mapsto \Omega^2 g_{ab}$$

- Causal relations and wave propagation remain unchanged
- Can attach boundary points, which correspond to 'points at infinity'
- 'Infinity' becomes a submanifold, has a causal structure; local geometry

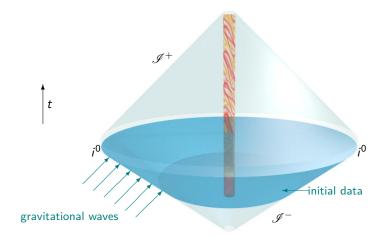
Consequence

Conformal structure is fundamental for space-times

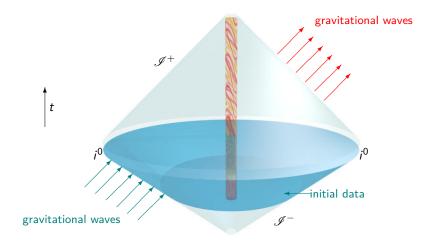
Schematic picture of an asymptotically flat space-time



Schematic picture of an asymptotically flat space-time



Schematic picture of an asymptotically flat space-time

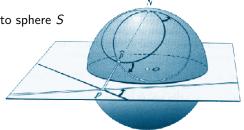


Embedding into larger manifold

Compare with stereographic projection

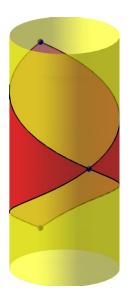
- \blacktriangleright Euclidean plane E is embedded into sphere S
- Attach one point N
- 'Endpoint' of all straight lines
- Conformal embedding:

$$g_S = \Omega^2 g_E$$



Embedding into larger manifold

- 'Physical space-time' M contained in a larger conformally equivalent space-time M
- Submanifold with boundary
- ▶ Boundary is smooth except for i⁰
- Einstein equations can be generalised to hold on \hat{M}
- ► H. Friedrich: Conformal field equations
- address the conformal class of the 'physical' metric g_{ab}
- ► Analysis of the structure near *i*⁰ by 'blow-up'

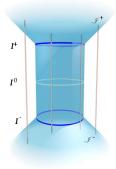


Basic properties

Construction in time-symmetric case

- ▶ Choose smooth AFID on \mathbb{R}^3 ,
- Smooth conformal extension to point $i \in S^3$ (cp. stereographic projection)
- ▶ Blow up i to a 2-sphere I^0 by including directions of geodesics through i
- evolution eq'ns and conformal Gauss gauge yield the following picture

Basic properties



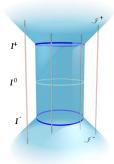
Notable points

- Spatial infinity is represented as a cylinder C
- Any asymp. flat hsf intersects C in a sphere between I⁻ and I⁺
- C is a total characteristic for the time evolution i.e., no outward propagation
- evolution eq'ns yield symmetric hyperbolic system within C

$$A^t \partial_t u + A^e \partial_e u = b$$

ightharpoonup can be used to propagate data from I^0 to I^+

Basic properties



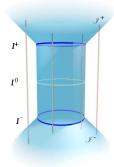
Notable points

- Any asymp. flat hsf intersects C in a sphere between I⁻ and I⁺
- C is a total characteristic for the time evolution i.e., no outward propagation
- evolution eq'ns yield symmetric hyperbolic system within C

$$A^t \partial_t u + A^e \partial_e u = b$$

- ightharpoonup can be used to propagate data from I^0 to I^+
- $ightharpoonup A^t$ degenerates at I^{\pm}
 - ⇒ generic data produce logarithmic divergences

Basic properties



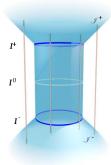
Notable points

- ► *C* is a total characteristic for the time evolution i.e., no outward propagation
- evolution eq'ns yield symmetric hyperbolic system within C

$$A^t \partial_t u + A^{\mathbf{e}} \partial_{\mathbf{e}} u = b$$

- \blacktriangleright can be used to propagate data from I^0 to I^+
- ► A^t degenerates at I^{\pm} \implies generic data produce logarithmic divergences
- ▶ propagate along 𝓕
- → no peeling, non-smooth radiation data

Basic properties



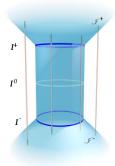
Notable points

 evolution eq'ns yield symmetric hyperbolic system within C

$$A^t \partial_t u + A^e \partial_e u = b$$

- \triangleright can be used to propagate data from I^0 to I^+
- ► A^t degenerates at I^{\pm} \implies generic data produce logarithmic divergences
- ightharpoonup propagate along \mathscr{I}
- → no peeling, non-smooth radiation data
 - data need to satisfy conditions at I⁰ to exclude logarithms

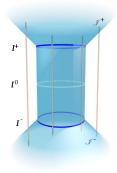
Basic properties



Notable points

- ightharpoonup can be used to propagate data from I^0 to I^+
- ► A^t degenerates at I^{\pm}
 - ⇒ generic data produce logarithmic divergences
- ightharpoonup propagate along \mathscr{I}
- → no peeling, non-smooth radiation data
 - data need to satisfy conditions at I⁰ to exclude logarithms
 - restricts the Cotton tensor (and its derivatives) of ID at infinity
- ⇒ asymptotic conditions on the conformal class asymptotically static (?)

Numerical study



Numerical study

- ► Can we extract radiative information ('1/r'-term) on \mathscr{I}^+ from the solution?
- How does a violation of the conditions influence the smoothness?
- ▶ How is it related to the initial data?
- First step: linear perturbation of the gravitational field in Minkowski space-time
- ▶ spin-2 zero-rest-mass field equations
- → next talk

Thank you

