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Spacing distributions 1962— present

Introduction — a numerical experiment

X — an n × n matrix with random entries from N[0, 1].

R := (X + XT )/2 — an n × n real symmetric matrix from the
GOEn.

Let pbulk(s; GOEn) denote the probability density for the
distribution of the spacing between eigenvalues [n/2] and [n/2] + 1.
An approximation can be computed through simulation:

I generate M members of the GOE, compute λ[n/2]+1 − λ[n/2]

for each;

I scale the resulting list so that the mean is unity;

I form a histogram.
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Wigner surmise
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I M = 2, 000, n = 13.

I p(0; s) = pbulk(s; GOEn)

I p(1; s) is the distribution of the spacing λ[n/2]+2 − λ[n/2]

i.e. bulk second nearest neigbours.

I Solid curves are the Wigner surmises

pW(0; s) =
π

2
se−πs2/4, pW(1; s) =

218s4

36π3
e−64s2/9π

3 / 15



Exact form of pbulk(s; GOEn) for n→∞
I In 1961 it was shown by Gaudin that

limn→∞ pbulk(s; GOEn) = d2

ds2 det(1− K(0,s)) where K(0,s) is
the integral operator on (0, s) with kernel

K (x , y) =
1

2

( sinπ(x − y)

π(x − y)
+

sinπ(x + y)

π(x + y)

)
.

I In 1980 it was shown by the Kyoto school of Jimbo et al that
this same Fredholm determinant can be expressed in terms of
a solution of a sigma Painlevé V equation.

I Notice that the functional form of pW(0; s) is
pW(0; s) = a(s) exp(−

∫ s
0 a(t) dt). Forrester and Witte (2001)

showed, that

lim
n→∞

pbulk(s; GOEn) =
2u((πs/2)2)

s
exp

(
−
∫ (πs/2)2

0

u(t)

t
dt
)

where, with u(s) ∼
s→0+

s
3 −

s2

45 + 8s5/2

135π ,

s2(u′′)2 = (4(u′)2 − u′)(su′ − u) +
9

4
(u′)2 − 3

2
u′ +

1
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Application of exact spacing distribution

The Montgomery-Odlyzko law states that the statistics of the large
Riemann zeros coincide with the statistics of the bulk eigenvalues
for GUE matrices — matrices (X + X †)/2 with X an n × n
complex standard Gaussian.

Odlyzko has a generated a famous data set of the Riemann zeros.
The first sentence of his 1987 paper “The 1020-th zero of the
Riemann zeta function and 70 million of its neighbors” reads

The 1020-th zero of the Riemann zeta function equals

1

2
+ i 15202440115920747268.6290299 . . .

At this time he also computed 70 million of its neighbours. Such
accurate statistics can distinguish the Wigner surmise from the
exact result.
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Graph using Odlyzko’s data and exact spacing distribution
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Large s asymptotics
The eigenvalue PDF for the GOE (β = 1), GUE (β = 2) and GSE
(β = 4) is proportional to

N∏
j=1

e−βλ
2
j /2

∏
1≤j<k≤N

|λk − λj |β

Denote by Ebulk
β (k; s) the probability that after bulk scaling there

are k eigenvalues in the interval (0, s). Dyson used a macroscopic
log-gas argument to predict that

Ebulk
β (k ; s/π) ∼

s→∞
τβs
−(3−β/2+2/β)e−βs2/16+(β/2−1)s/2.

This is verified for β = 1, 2 and 4, and the Fredholm/Painlevé
characterisation gives

τ1 = 25/12e(3/2)ζ′(−1), τ2 = 21/3e3ζ′(−1), τ4 = 2−29/24e(3/2)ζ′(−1).
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Log-gas strategy, applied to CβEN

First approach (Dyson 1962)

I Introduce the large deviations ansatz

Eβ(0; (−α, α); CβEN) ∼
N→∞

e−βδF

where δF is the free energy cost of conditioning the
equilibrium density so that ρ(1)(θ) = 0 for θ ∈ (−α, α).

I Choose ρ(1)(θ) to minimize δF = V1 + V2, where V1 is the
electrostatic energy

V1 = −1

2

∫ 2π

0

∫ 2π

0

(
ρ(1)(θ1)−N/2π

)(
ρ(1)(θ2)−N/2π

)
log |e iθ1−e iθ2 | |dθ1dθ2

and the entropy term

V2 =

(
1

β
− 1

2

)∫ 2π

0

ρ(1)(θ) log

(
ρ(1)(θ)

N/2π

)
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Up to terms of order log(Nα), suffices to minimise V1. This gives

ρ(1)(θ) = N
sin(θ/2)√

sin2(θ/2)− sin2(α/2)

and

βV1 = −β
2

N2 log cos
(α

2

)
, βV2 =

(
1− β

2

)
N log

(
sec
(α

2

)
+ tan

(α
2

))

Now take a double scaling limit, replacing (−α, α) by
(−πs/N, πs/N), and then taking N →∞.

This gives

Ebulk
β (0; (0, s)) ∼

s→∞
exp

(
− β(πs2)/16 + (β/2− 1)πs/2

)
.
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Log-gas strategy applied directly to the bulk

Second approach (Dyson (1995), Fogler and Shklovskii (1995))

I The aim is to compute the asymptotics of Ebulk
β (n; s).

I The log-gas is taken to be infinite in extent, with the bulk
state characterised by a uniform density.

I The n eigenvalues are taken to be a continuous conductive
fluid occupying the interval (−b, b) ⊂ (−t, t), 2t = s.

I This region has constant electrostatic potential −v say, while
the electrostatic potential in R\{−t, t} is zero.

I Find the simple result V1 = −nv
2 + π2

4 (t2 − v2), V2 = v .

I b is determined by n, and similarly v , in terms of elliptic
integrals.
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Result for E bulk
β (n; (0, s))

This gives that for 0� n� s, we have

log Ebulk
β (n; (0, s)) ∼

s→∞
−β (πs)2

16
+

(
βn +

β

2
− 1

)
πs

2

+

{
n

2

(
1− β

2
− βn

2

)
+

1

4

(β
2

+
2

β
− 3
)}

log s
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Rigorous results
There are characterisations of the bulk general β state in terms of
stochastic differential equations due to Killip and Stoiciu, and
Valko and Virág.

The latter have used this, and the Cameron-Martin-Girsanov
formula to prove the asymptotic formula

Ebulk
β (0; (0, s)) ∼

s→∞
exp

(
− β(πs2)/16 + (β/2− 1)πs/2

)
.

The results for log Ebulk
β (n; (0, s)) can be established (and

extended) for β = 1, 2 and 4 using results for the eigenvalues of
the underlying Fredholm operator.
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My results on the topic

I I’ve used generalized hypergeometric functions to obtain
rigorous results for the asymptotics of Ehard

β (0; (0, s); a)

I Together with Nick Witte I’ve applied the infinite log-gas
formalism to predict the asymptotic expansion of
Ehard
β (n; (0, s); a) and E rmsoft

β (n; (s,∞)).

I I’ve obtained rigorous large deviation formulas for a Laguerre
ensemble finitization of Ehard

β (n; (0, s); a), and shown that the
double scaling limit agrees with the infinite log-gas prediction.

I The latter makes essential use the Barnes double gamma
function and satisfies the asymptotic functional equation

Ehard
β (n; (0, s/s̃β);βa/2) ∼

s→∞
Ehard

4/β (β(n+1)/2−1; (0, s/s̃4/β); a−2+4/β),

where s̃4/β(β/2)2 = s̃β.
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A conjecture
Define the Stirling modular form ρ2(1, τ), which according to
Shantani can be written

ρ2(1, τ) = (2π)3/4τ−1/4+(τ+1/τ)/12eP(τ)
∞∏

n=1

eQ(nτ)

Γ(1 + nτ)
,

with

P(τ) = − γ

12τ
− τ

12
+τζ ′(−1), Q(x) =

(1

2
+x
)

log x−x+log
√

2π+
1

12x
.

We have

log τbulk
β/2 =

(
3− 4

3
(β/2 + 2/β)

)
log 2 + 3

(1

2
log 2π − log ρ2(1, 2/β)

)
and consequently

Ebulk
β (0; (0, s/π)) ∼

s→∞

( 2

β

)3/2

Ẽbulk
4/β (0; (0,

β

2
s/π)),

where Ẽbulk
β ∼ Ebulk

β |s 7→−s .
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A numerical realisation
Recall the exact result Ebulk

2 (0; s) = det(1− K(0,s)), where K is

the integral operator on (0, s) with kernel sinπ(x−y)
π(x−y) .

Using methods advocated recently by Bornemann, together with

the tanh-sinh quadrature rule, we can tabulate r(s) =
Eb,as

2 (0;(0,s))

Ebulk
2 (0;(0,s))

s r(s)
1 1.0046735914726577
2 0.9998383226940526
3 0.9999753765440204
4 0.9999961026171116
5 0.9999991096965057
6 0.9999997235559452
7 0.9999998946139279
8 0.9999999537746553
9 0.9999999775313906

10 0.9999999881794448
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