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Spacing distributions 1962— present

Introduction — a numerical experiment

X — an n x n matrix with random entries from N[0, 1].

R := (X + XT)/2 — an n x n real symmetric matrix from the
GOE,.
Let p""*(s; GOE,,) denote the probability density for the

distribution of the spacing between eigenvalues [n/2] and [n/2] + 1.

An approximation can be computed through simulation:

> generate M members of the GOE, compute A[,/2141 — A[n/2]
for each;

» scale the resulting list so that the mean is unity;

» form a histogram.

)

15



Wigner surmise
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» M =2,000, n=13.

> p(0;s) = pP(s; GOE,)

> p(1;s) is the distribution of the spacing A, /0142 — Ajn/2)
i.e. bulk second nearest neigbours.

» Solid curves are the Wigner surmises
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Exact form of p"(s; GOE,) for n — oo

» In 1961 it was shown by Gaudin that
limy oo PP (s; GOE,,) = j—; det(1 — K(o,5)) where K(qq) is
the integral operator on (0, s) with kernel
1/sinm(x —y) sinm(x+y)
K(X’y):§< m(x —y) 7(x+y) )
» In 1980 it was shown by the Kyoto school of Jimbo et al that
this same Fredholm determinant can be expressed in terms of

a solution of a sigma Painlevé V equation.
» Notice that the functional form of pWV(0;s) is
W(0;s) = a(s) exp(— [ a( . Forrester and Witte (2001)
showed, that

lim p"(s; GOE,) — M exp ( B /(7rs/2)2 u(t) dt)

n—oo t
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where, with u(s) ~ £ — 5 4 89~
( )s_)0+ 37 45 T 1367

s2(u")? = (4(u')? — ) (su' — u) + 9(u')2 ——u + %



Application of exact spacing distribution

The Montgomery-Odlyzko law states that the statistics of the large
Riemann zeros coincide with the statistics of the bulk eigenvalues
for GUE matrices — matrices (X + XT)/2 with X an n x n
complex standard Gaussian.

Odlyzko has a generated a famous data set of the Riemann zeros.
The first sentence of his 1987 paper “The 10%°-th zero of the
Riemann zeta function and 70 million of its neighbors” reads

The 10?°-th zero of the Riemann zeta function equals

1
5 + i 15202440115920747268.6290299 . . .

At this time he also computed 70 million of its neighbours. Such
accurate statistics can distinguish the Wigner surmise from the
exact result.
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Graph using Odlyzko's data and exact spacing distribution
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Large s asymptotics
The eigenvalue PDF for the GOE (5 = 1), GUE (8 = 2) and GSE
(8 = 4) is proportional to

N
T2 I =17
j=1

1<j<k<N

Denote by E};“lk(k; s) the probability that after bulk scaling there
are k eigenvalues in the interval (0,s). Dyson used a macroscopic
log-gas argument to predict that

Egulk(k; s/) ~ Tﬁs—(3—/3/2+2/[3)6—552/164—(,8/2—1)5/2‘

S—

This is verified for 3 = 1,2 and 4, and the Fredholm/Painlevé
characterisation gives

= RBAC(Y) L l3(L) o 9-29/244(3/2)C'(-1),
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Log-gas strategy, applied to CSEy
First approach (Dyson 1962)

» Introduce the large deviations ansatz

Es(0; (—a,@); CAEN) | ~ e F

where §F is the free energy cost of conditioning the
equilibrium density so that p(1)(¢) = 0 for 6 € (—a, a).

» Choose p(l)(e) to minimize 6F = V4 + V5, where V; is the
electrostatic energy

1 27 27 ) )
= 75/ / (,0(1)(91)7/\//271') (,0(1)(92)7/\//271') |Og |e’0176’02| |d01d
0 0

and the entropy term

6= (53) [ oo (2)



Up to terms of order log(Na), suffices to minimise V;. This gives

sin(6/2)
6)=N
P(1) \/S|n2(9/2) _ Sinz(a/2)
and
BV = —§N2 log cos (%), BVs = <1§>Nlog <sec (%) +tan (Z))

Now take a double scaling limit, replacing (—a, ) by
(=ms/N,ms/N), and then taking N — oc.

This gives

E5™™(0; (0,5)) exp ( — B(ns?)/16 + (/2 — 1)75/2)'



Log-gas strategy applied directly to the bulk

Second approach (Dyson (1995), Fogler and Shklovskii (1995))

» The aim is to compute the asymptotics of Eg“lk(n; s).

» The log-gas is taken to be infinite in extent, with the bulk
state characterised by a uniform density.

» The n eigenvalues are taken to be a continuous conductive
fluid occupying the interval (—b, b) C (—t,t), 2t = s.

» This region has constant electrostatic potential —v say, while
the electrostatic potential in R\{—t, t} is zero.

> Find the simple result Vi = — % + 7r72(1“2 —v3), Vo =v.

» b is determined by n, and similarly v, in terms of elliptic
integrals.
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Result for E"™(n; (0, s))

This gives that for 0 < n < s, we have

g E5(; 0.9)) ~ oL ¢ (ﬂ” Eh 1>
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Rigorous results

There are characterisations of the bulk general § state in terms of
stochastic differential equations due to Killip and Stoiciu, and
Valko and Virag.

The latter have used this, and the Cameron-Martin-Girsanov
formula to prove the asymptotic formula

E5"(0:(0,5)) ~ exp ( — B(ns®)/16 + (8/2 — 1)7rs/2)-

The results for log Eg“lk(n; (0,5)) can be established (and
extended) for 5 = 1,2 and 4 using results for the eigenvalues of
the underlying Fredholm operator.
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My results on the topic

» I've used generalized hypergeometric functions to obtain
rigorous results for the asymptotics of Egafd(o; (0,s); a)

» Together with Nick Witte I've applied the infinite log-gas
formalism to predict the asymptotic expansion of
Egard(n; (0,s); a) and Eé"’SOft(n; (s,00)).

» |'ve obtained rigorous large deviation formulas for a Laguerre
ensemble finitization of Eé““d(n; (0,s); a), and shown that the
double scaling limit agrees with the infinite log-gas prediction.

» The latter makes essential use the Barnes double gamma
function and satisfies the asymptotic functional equation

Egard(n; (0’ S/gg); 63/2) NOO il/aﬁrd(ﬁ(n—Fl)/z—l, (0; 5/§4/ﬁ); 3—2+4/6)a

S—

where 3,,5(8/2)? = 33.
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A conjecture

Define the Stirling modular form p»(1,7), which according to
Shantani can be written

0 Q(nT)
_ 3/4_—1/4+(r+1/7)/12 P() TT &~
pa(1,7) = (2m)*/*r e 1;[1 )
with
- T e _(t _ N
P(r) = o 12+7§( 1), Q)= (2+X) log x—x+log 27T+12X.
We have

og Ty = (3 5(8/2+2/8)) log2 + 3(5 log 2n — log pa(1,2/9))

and consequently

(3)" B0 0. 5/,

E/l})ulk((); (0, 5/71')) ~ 3 4/ 55

55— 00

where Egulk ~ Egulk\SH,s.
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A numerical realisation

Recall the exact result EX"¥(0; s) = det(1 — K(o,s)), where K is
| sin(x—y)
m(x—y) -
Using methods advocated recently by Bornemann, together with
b,as/n.
E;"(0:(0,5))
E;"1%(03(0.5))

the integral operator on (0, s) with kerne

the tanh-sinh quadrature rule, we can tabulate r(s) =

r(s)
1.0046735914726577
0.9998383226940526
0.9999753765440204
0.9999961026171116
0.9999991096965057
0.9999997235559452
0.9999998946139279
0.9999999537746553
0.9999999775313906
0.9999999881794448
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