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Arrive at rate \; customers / minute
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Served at rate u customers / minute
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High priority overtake low at rate p places / minute



Motivation

A related model: the accumulating priority queue. Customers
ordered according to priority

V = bi(t - tarrive)a I = 1727 bl > b2

— classlbl=1

— class2,b2=b=05

Mean waiting time (Kleinrock, 1964) and complete waiting time
distribution (Stanford, Taylor, Ziedins, 2011) are known.



The Prioritising Exclusion Process
The queue is equivalent to an exclusion process — the PEP
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» Low priority — empty lattice site,
» High priority — filled lattice site
» Overtaking — particle hopping

» But, lattice length not fixed
Specify a configuration by

v

T = (Tny Tne1y- - T1)ns 11 € {0,1}



Bounded and unbounded queues
Let A = A1 + Ao.
> A>pu

(n) ~ (A —p)t expected length is unbounded

A< pu
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P, is the stationary length distribution, solution to

expected length is bounded

d
0=—PFPy=uPi — P
dt 0= pur1 — 0
d
0= —dtP,, =APp_1+ pPpy1 — A+ p)Pr, n>0



Density profiles
» Density by position (i) and queue length (n)
(1i)n = P(HI in place i and queue length is n)

» Simulation results show two distinct phases
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Domain wall model for the queue
The domain wall model is an idea borrowed from the ASEP
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» Domain wall between jam and low density region located at
first empty site from service end

» Jam grows when particle jumps on to the end

» Jam shrinks when service occurs



Domain wall model for the queue

Assume the region beyond the jam has constant low density «

P(Ti = 1’”7 k)
1

1, 1<i<k
o =<0, i=k+1
a, k+2<i<n

n k+1 k 0
P(n, k), probability of queue length n, jam length k, should satisfy
d
aP(n, k) = AP(n—1,k)+ paP(n,k — 1)+ uP(n+ 1,k + 1)
—(A+ p+ pa)P(n, k)

Forn>k+1, n k> 0.



Domain wall model for the queue

Assume the region beyond the jam has constant low density «

P(Ti:]"n?k)
1
A por © 1, 1<i<k
— — —
ra =<0, i=k+1
a, k+2<i<n
n k+1 k 0

P(n, k), probability of queue length n, jam length k, should satisfy

d

aP(n, k) = AP(n—1,k)+ paP(n,k — 1)+ uP(n+ 1,k + 1)
—(A+ p+ pa)P(n, k)

Forn>k+1, n k> 0.



Simple domain wall model - boundary conditions

» Simple domain wall model is complicated by the boundary
conditions — what happens when the jam reaches the arrival
end?

» Simplification: consider the n — oo limit

%P(k) — paP(k — 1)+ uP(k + 1) — (1 + pa)P(k)

» The only boundary case is k =0



The unbounded queue — an exact solution
Stationary probability of finite segment from an infinite queue:

P(Tmy Tm—1y---,T1) = Z P(. . Tmt1s Tmy Tm—1y---5T1)

Too s Tm+1=0,1

Example with length k jam

k

Exact equation:

d
0 = IP(1,0,1,o,1k)
= pP(1,0,0,1,0,1%) 4+ pP(1,1,0,0,1%) + pP(1,0,1,1,0,1%1)
+uP(1,0,1,0,1%1) + ,P(1,0,1,0,1%,0)
— (1 +2p)P(1,0,1,0,1%)



Domain wall ansatz

1 1, 1<i<k
" P(ri=1lk) =20, i=k+1
a, k+2<i
k+1 k 0
P(Tm, Tm—15 - - -y Tk+2, 0, lk) =a™(1- oz)mfkfmlflpjam(k)
my = Z Ti
i=k+2
Applied to the example
d
0 = —P.n(k
dt J ( )
—  paPian(k — 1) + #Pjam(k + 1) + (1 = @)a* Pyarn(0)
— (1 + p) Pjam(k)

Almost identical to the simple domain wall dynamics



Recurrence for Py, (k)

Combining with k = 0 case gives the recurrence
Piam(K) = 2 Piam(k = 1)+ 0*Piam(0). K >1
Solution
Pan(k) =Tk (22) aiPian (0
kt1

)kijam(o)

= (pa

pou

Pjam(0) determined by the normalisation condition

ijam

k=0

Constraint pa < u: domain wall stays near service end



The arrival frame

Reference frame at the arrival end of the queue

1 2 3...

For a finite segment at the arrival end, rate equation includes
arrival terms

0 = %P(T]_,TQ, ey Tm)

= ...Tl)\lp(Tz,...,Tm)-i-(l —Tl))\zp(Tz,...,Tm)
—AP(11, .y Tm) e



The arrival frame solution

Assuming the jam stays far from the arrival end, the arrival frame
ansatz is
P(r1,...,Tm) = a™(1 — )™ ™

All cases reduce to

pa® —(p+Na+ A =0

B p+A—+/(p—A)2+4ph
— =

= o

Note pa < A: domain wall stays far from arrival end



Exact solution vs Monte Carlo simulation

» Service frame density from domain wall solution
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» Monte Carlo simulation, \; = 1.3, A2 =0.2, p =1,
p=03,1,1.5 = pa ~ .25,.74, .95
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The bounded queue

Density profiles have strong dependence on the length distribution

> (Ti)n < Py, P, = (1 - %) (%>"

» Can we factor out length dependence?
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<Ti>n <Ti>n/Pn
Domain wall ansatz with length assumption

P(Tn, Tt Tka2,0,1% 0) = Ppa™(1 — )" F=m=1px (k)

jam



Length assumption solution

Solution for domain wall away from boundaries

Prun(k) =10 (B)" aPLn(0)
~ (po+ &) ;jﬁ*) P 0)

for pac < A, and

ptu—/(p+ )2 —apXe

o= 2

Solution fails if the jam reaches the arrival end, e.g.

d

— P17 Ln)#£0

An approximate solution to an approximation of the problem —
compare to simulations



Approximate solution vs Monte Carlo simulation

With p=1,p=1,A; = 0.7, A\» = 0.2 = pa = 0.53

(Tidn

When pa < A, domain wall solution with length assumption (solid
lines) gives a very good approximation.



Monte Carlo results for pa > A

With p=1,p=3,A; = 0.7, A\» = 0.1 = pa = 0.83
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For pa > A, the domain wall solution does not apply and even the
length assumption is clearly invalid.



Stationary phase diagram

» Fixed A\, and =1
» Phase diagram for 0 < A\ < A, p>0

Unbounded queue (A = 1.5) Bounded queue (A = 0.6)

po < p = pa <\ =

A—1 : 1-A
A1 < min{l + T,)\} A1 < min{\2 <1 + p> S A}



Conclusion

From a simple physical picture, the domain wall idea, we
» Found the exact solution for the unbounded queue;
» Found a good approximation for the bounded queue;

» Characterised the stationary behaviour, in both cases, by the
rate at which the jam of high priority customers grows.

Future work:

» Compute waiting times for the PEP and compare to the
accumulating priority queue (APQ).

» Is the change in stationary behaviour we see in the PEP
reflected in the APQ?

» Can we find an exact solution for the bounded PEP?
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