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Lattice Paths are a simple model for polymers

Some results are of interest directly

The methods lead to producing efficient algorithms, of much
use in computing/data mining
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Associate objects with algebraic quantities

Exploit properties of objects (e.g. symmetries); or

Find relationships between different sets of objects

Deduce formulae/prove known results.
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Combinatorial Tools

Bijections

Definition

A bijection is a function Γ: A→ B such that Γ is:

well-defined;

injective, Γ(a) = Γ(a′) =⇒ a = a′; and

surjective, ∀b ∈ B, ∃a ∈ A : b = Γ(a).
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Combinatorial Tools

Involutions

Definition

Consider a signed set Ω = Ω+ ∪ Ω− where Ω+ ∩ Ω− = ∅.
ϕ : Ω→ Ω is an involution if

1 ϕ2 = 1; and

2 for all a ∈ Ω, ϕ is either fixed or sign-reversing.
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Binomial Paths

Lattice Paths

Definition

A path p on the integer lattice is a sequence of vertices
p = v0v1 . . . vt such that vi ∈ Z× Z and (vi+1 − vi ) ∈ S , we call S
the step set of the paths.

Definition

A binomial path is a path with the step set S = {(0, 1), (1, 0)}.

The number of binomial paths of length n with k horizontal steps
is given by the binomial coefficient(

n

k

)
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Sets of Paths

Sets of Lattice Paths

Interested in sets of lattice paths with the geometry:
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Young Tableaux
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Young tableaux have

shape µ

content cx for each cell x

hook lengths hx for each cell x
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Theorem on Non-Intersecting Paths

Theorem (Gessel-Viennot, Lindström)

Consider a directed acyclic graph G = (V ,E ), and let |ai  bj | be
the number of directed paths from ai to bj where ai , bj ∈ V . If
either every path ai  bi intersects every path aj  bj ; or every
path ai  bj intersects every path aj  bi , then

|N (a|b)| = det
(

[|ai  bj |]i ,j∈[n]
)
.

Theorem (Gessel & Viennot)

Let ai = a + (i − 1), µ = [p(b)]?, Ca(µ) =
∏

x∈µ(a + cx) and H(µ)
be the product of the hook lengths of µ. Then:

|N (a|b)| =
Ca(µ)

H(µ)
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Theorem on Non-Intersecting Paths

The Hook Length Formula

Famous result due to Gessel and Viennot, and independently
due to Lindström

Gessel-Viennot proof was almost entirely combinatorial

One lemma was only able to be proved algebraically

This “missing lemma” is also known as the 2nd Remmel
Recurrence

Later an implicit combinatorial proof was given using the
Garsia-Milne Method
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The Hook Length Formula

Theorem (Gessel & Viennot)

Let ai = a + (i − 1), µ = [p(b)]?, Ca(µ) =
∏

x∈µ(a + cx) and H(µ)
be the product of the hook lengths of µ. Then:

|N (a|b)| =
Ca(µ)

H(µ)

1 Involution on sets of paths

2 Bijection between non-intersecting paths and tableaux

3 Recursive evaluation via missing lemma

4 Hook Length Formula
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Theorem on Non-Intersecting Paths

1 Involution on sets of paths

(1)(2)(3)(45) (12)(3)(45)
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Theorem on Non-Intersecting Paths

1 Involution on sets of paths

2 Bijection between non-intersecting paths and tableaux
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Theorem on Non-Intersecting Paths

1 Involution on sets of paths

2 Bijection between non-intersecting paths and tableaux

3 Recursive evaluation via missing lemma

4 Hook Length Formula
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The Missing Lemma

Let the number of non-intersecting configurations of k binomial
paths on the geometry below be:(

a1, . . . , ak
b1, . . . , bk

)
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The Missing Lemma

The Missing Lemma

Theorem (Fijn & Brak)

If b1 6= 0 then

b1b2 · · · bk
(
a1, . . . , ak
b1, . . . , bk

)
= a1a2 · · · ak

(
a1 − 1, . . . , ak − 1

b1 − 1, . . . , bk − 1

)
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Combinatorial Interpretation

Combinatorial Interpretation

Each path has bi horizontal steps, and ai total steps.

LHS we mark one horizontal edge on each path.

RHS we have one fewer horizontal edge on each path, and
mark one vertex on each path.
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Proof by Bijection

Bijection
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Solution Forms

Types of Formulae

Asymptotic formulae

n! ∼
√

2πn
(n
e

)n

Summation forms∑
p∈O?t

w(p) =
∑
σ 6=1

∑
I?(σ)
k≥1

N∏
i=1

ωk(−1)|Iσ |+k+
<

(
t − k?

bσi − ai − k − k+< + k+>

)

Product forms (
a1, . . . , ak
b1, . . . , bk

)
=

k∏
i=1

(
ai
bi

)
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Future Research

Previously no known combinatorial proofs for product forms.

Vast array of product forms which may be soluble by these
methods.

Alternating Sign Matrices (and various symmetry classes thereof).
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