Endings and Beginnings: The Story of Non-Intersecting Paths

Dr Paul W. T. Fijn

University of Melbourne

December 3rd, 2012

Outline

- 2 Combinatorial Objects
- The Hook Length Formula
- 4 The 'Missing' Lemma of Gessel and Viennot

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **5** Solution Forms
- 6 Future Research

• Discrete models for real world phenomena: Lattice Paths are a simple model for polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Discrete models for real world phenomena: Lattice Paths are a simple model for polymers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Some results are of interest directly

Motivation

- Discrete models for real world phenomena: Lattice Paths are a simple model for polymers
- Some results are of interest directly
- The methods lead to producing efficient algorithms, of much use in computing/data mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combinatorial Methods

Associate objects with algebraic quantities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Combinatorial Methods

Associate objects with algebraic quantities

Exploit properties of objects (e.g. symmetries); or

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combinatorial Methods

Associate objects with algebraic quantities

Exploit properties of objects (e.g. symmetries); or

Find relationships between different sets of objects

Combinatorial Methods

Associate objects with algebraic quantities

Exploit properties of objects (e.g. symmetries); or

Find relationships between different sets of objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Deduce formulae/prove known results.

Playing with Paths

Combinatorial Methods

Combinatorial Tools

Definition

A bijection is a function $\Gamma: A \to B$ such that Γ is:

- well-defined;
- injective, $\Gamma(a) = \Gamma(a') \implies a = a'$; and
- surjective, $\forall b \in B, \exists a \in A \colon b = \Gamma(a)$.

Playing with Paths

Combinatorial Methods

Combinatorial Tools

Involutions

Definition

Consider a signed set $\Omega = \Omega^+ \cup \Omega^-$ where $\Omega^+ \cap \Omega^- = \emptyset$. $\varphi : \Omega \to \Omega$ is an involution if $\varphi^2 = 1$; and \emptyset for all $a \in \Omega$, φ is either fixed or sign-reversing.

Combinatorial Tools

Combinatorial Tools

Combinatorial Tools

Combinatorial Tools

Binomial Paths

Lattice Paths

Definition

A path p on the integer lattice is a sequence of vertices $p = v_0v_1 \dots v_t$ such that $v_i \in \mathbb{Z} \times \mathbb{Z}$ and $(v_{i+1} - v_i) \in S$, we call S the *step set* of the paths.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Binomial Paths

Lattice Paths

Definition

A path p on the integer lattice is a sequence of vertices $p = v_0v_1 \dots v_t$ such that $v_i \in \mathbb{Z} \times \mathbb{Z}$ and $(v_{i+1} - v_i) \in S$, we call S

the step set of the paths.

Definition

A binomial path is a path with the step set $S = \{(0,1), (1,0)\}$.

Binomial Paths

Lattice Paths

Definition

A path p on the integer lattice is a sequence of vertices $p = v_0v_1 \dots v_t$ such that $v_i \in \mathbb{Z} \times \mathbb{Z}$ and $(v_{i+1} - v_i) \in S$, we call S the *step set* of the paths.

Definition

A binomial path is a path with the step set $S = \{(0,1), (1,0)\}$.

The number of binomial paths of length n with k horizontal steps is given by the binomial coefficient

 $\binom{n}{k}$

Sets of Paths

Sets of Lattice Paths

Interested in sets of lattice paths with the geometry:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

└─ Young Tableaux

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Young tableaux have

- shape μ
- content c_x for each cell x
- hook lengths h_x for each cell x

└─ Theorem on Non-Intersecting Paths

Theorem on Non-Intersecting Paths

Theorem (Gessel-Viennot, Lindström)

Consider a directed acyclic graph G = (V, E), and let $|a_i \rightsquigarrow b_j|$ be the number of directed paths from a_i to b_j where $a_i, b_j \in V$. If either every path $a_i \rightsquigarrow b_i$ intersects every path $a_j \rightsquigarrow b_j$; or every path $a_i \rightsquigarrow b_j$ intersects every path $a_j \rightsquigarrow b_j$, then

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = \det\left(\left[|a_i \rightsquigarrow b_j|\right]_{i,j \in [n]}\right).$$

└─ Theorem on Non-Intersecting Paths

Theorem on Non-Intersecting Paths

Theorem (Gessel-Viennot, Lindström)

Consider a directed acyclic graph G = (V, E), and let $|a_i \rightsquigarrow b_j|$ be the number of directed paths from a_i to b_j where $a_i, b_j \in V$. If either every path $a_i \rightsquigarrow b_i$ intersects every path $a_j \rightsquigarrow b_j$; or every path $a_i \rightsquigarrow b_j$ intersects every path $a_j \rightsquigarrow b_i$, then

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = \det\left(\left[|a_i \rightsquigarrow b_j|\right]_{i,j \in [n]}\right).$$

Theorem (Gessel & Viennot)

Let $a_i = a + (i - 1)$, $\mu = [p(\mathbf{b})]^*$, $C_a(\mu) = \prod_{x \in \mu} (a + c_x)$ and $H(\mu)$ be the product of the hook lengths of μ . Then:

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = rac{C_{\boldsymbol{a}}(\mu)}{H(\mu)}$$

└─ Theorem on Non-Intersecting Paths

The Hook Length Formula

- Famous result due to Gessel and Viennot, and independently due to Lindström
- Gessel-Viennot proof was almost entirely combinatorial
- One lemma was only able to be proved algebraically
- This "missing lemma" is also known as the 2nd Remmel Recurrence
- Later an implicit combinatorial proof was given using the Garsia-Milne Method

└─ Theorem on Non-Intersecting Paths

The Hook Length Formula

Theorem (Gessel & Viennot)

Let $a_i = a + (i - 1)$, $\mu = [p(\mathbf{b})]^*$, $C_a(\mu) = \prod_{x \in \mu} (a + c_x)$ and $H(\mu)$ be the product of the hook lengths of μ . Then:

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = rac{C_{\boldsymbol{a}}(\mu)}{H(\mu)}$$

Involution on sets of paths

└─ Theorem on Non-Intersecting Paths

The Hook Length Formula

Theorem (Gessel & Viennot)

Let $a_i = a + (i - 1)$, $\mu = [p(\mathbf{b})]^*$, $C_a(\mu) = \prod_{x \in \mu} (a + c_x)$ and $H(\mu)$ be the product of the hook lengths of μ . Then:

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = rac{C_{\mathsf{a}}(\mu)}{H(\mu)}$$

- Involution on sets of paths
- Ø Bijection between non-intersecting paths and tableaux

└─ Theorem on Non-Intersecting Paths

The Hook Length Formula

Theorem (Gessel & Viennot)

Let $a_i = a + (i - 1)$, $\mu = [p(\mathbf{b})]^*$, $C_a(\mu) = \prod_{x \in \mu} (a + c_x)$ and $H(\mu)$ be the product of the hook lengths of μ . Then:

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = rac{C_{\mathsf{a}}(\mu)}{H(\mu)}$$

- Involution on sets of paths
- Ø Bijection between non-intersecting paths and tableaux
- 8 Recursive evaluation via missing lemma

└─ Theorem on Non-Intersecting Paths

The Hook Length Formula

Theorem (Gessel & Viennot)

Let $a_i = a + (i - 1)$, $\mu = [p(\mathbf{b})]^*$, $C_a(\mu) = \prod_{x \in \mu} (a + c_x)$ and $H(\mu)$ be the product of the hook lengths of μ . Then:

$$|\mathcal{N}(\mathbf{a}|\mathbf{b})| = rac{C_{\mathsf{a}}(\mu)}{H(\mu)}$$

- Involution on sets of paths
- Ø Bijection between non-intersecting paths and tableaux
- 8 Recursive evaluation via missing lemma
- 4 Hook Length Formula

└─ Theorem on Non-Intersecting Paths

Involution on sets of paths

(1)(2)(3)(45)

(12)(3)(45)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Involution on sets of paths
- Ø Bijection between non-intersecting paths and tableaux

7	7		
3	4	4	
2	3	3	7
1	1	1	2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Involution on sets of paths
- **2** Bijection between non-intersecting paths and tableaux

- **③** Recursive evaluation via missing lemma
- 4 Hook Length Formula

Let the number of non-intersecting configurations of k binomial paths on the geometry below be:

$$\binom{a_1,\ldots,a_k}{b_1,\ldots,b_k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Playing with Paths

└─ The 'Missing' Lemma of Gessel and Viennot

└─ The Missing Lemma

The Missing Lemma

Theorem (Fijn & Brak)

If $b_1 \neq 0$ then

$$b_1b_2\cdots b_k\binom{a_1,\ldots,a_k}{b_1,\ldots,b_k}=a_1a_2\cdots a_k\binom{a_1-1,\ldots,a_k-1}{b_1-1,\ldots,b_k-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Playing with Paths

- The 'Missing' Lemma of Gessel and Viennot
 - Combinatorial Interpretation

Combinatorial Interpretation

• Each path has b_i horizontal steps, and a_i total steps.

- The 'Missing' Lemma of Gessel and Viennot
 - Combinatorial Interpretation

Combinatorial Interpretation

Theorem

If $b_1 \neq 0$ then

$$b_1b_2\cdots b_kinom{a_1,\ldots,a_k}{b_1,\ldots,b_k}=a_1a_2\cdots a_kinom{a_1-1,\ldots,a_k-1}{b_1-1,\ldots,b_k-1}$$

- Each path has b_i horizontal steps, and a_i total steps.
- LHS we mark one horizontal edge on each path.

- The 'Missing' Lemma of Gessel and Viennot
 - Combinatorial Interpretation

Combinatorial Interpretation

Theorem

If $b_1 \neq 0$ then

$$b_1b_2\cdots b_kinom{a_1,\ldots,a_k}{b_1,\ldots,b_k}=a_1a_2\cdots a_kinom{a_1-1,\ldots,a_k-1}{b_1-1,\ldots,b_k-1}$$

- Each path has b_i horizontal steps, and a_i total steps.
- LHS we mark one horizontal edge on each path.
- RHS we have one fewer horizontal edge on each path, and mark one vertex on each path.

Playing with Paths

└─ The 'Missing' Lemma of Gessel and Viennot

(ロ)、(型)、(E)、(E)、 E) の(の)

└─Proof by Bijection

Bijection

Playing with Paths

└─ The 'Missing' Lemma of Gessel and Viennot

(ロ)、(型)、(E)、(E)、 E) の(の)

└─Proof by Bijection

Bijection

Solution Forms

Types of Formulae

Asymptotic formulae

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

└─ Solution Forms

Types of Formulae

Asymptotic formulae

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Summation forms

$$\sum_{\mathbf{p}\in\mathcal{O}_t^{\star}} w(\mathbf{p}) = \sum_{\sigma\neq 1} \sum_{\substack{l^{\star}(\sigma)\\k\geq 1}} \prod_{i=1}^N \omega^k (-1)^{|\mathcal{I}_{\sigma}|+k_{<}^+} \binom{t-k^{\star}}{b_{\sigma_i}-a_i-k-k_{<}^++k_{>}^+}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

└─ Solution Forms

Types of Formulae

Asymptotic formulae

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Summation forms

$$\sum_{\mathbf{p}\in\mathcal{O}_t^{\star}} w(\mathbf{p}) = \sum_{\sigma\neq 1} \sum_{\substack{I^{\star}(\sigma)\\k\geq 1}} \prod_{i=1}^N \omega^k (-1)^{|\mathcal{I}_{\sigma}|+k^+_{<}} \binom{t-k^{\star}}{b_{\sigma_i}-a_i-k-k^+_{<}+k^+_{>}}$$

Product forms

$$\binom{a_1,\ldots,a_k}{b_1,\ldots,b_k} = \prod_{i=1}^k \binom{a_i}{b_i}$$

▲ロト ▲聞ト ▲目ト ▲目ト 三目 つんの

Future Research

Future Research

Previously no known combinatorial proofs for product forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future Research

Previously no known combinatorial proofs for product forms.

Vast array of product forms which may be soluble by these methods.

Future Research

Previously no known combinatorial proofs for product forms.

Vast array of product forms which may be soluble by these methods.

Alternating Sign Matrices (and various symmetry classes thereof).