Topological Order in Spin Systems



Much ado about topological order

Systems with topological order in 2+1 dimensions typically have
anyonic/fractionalized/spin-charge separated excitations.

These quasiparticles can even have non-abelian statistics, i.e.
when “braided” around each other, the system can change state.

Local perturbations don’t affect statistics, so this gives promise for
topologically protected quantum computing.



What is topological order?

* Conceptually useful definition: the number of ground states
depends on topological properties (e.g. genus) of space.

« Common (although not required) characteristic:

gapless edge modes



Free fermion cases are now well understood

For example, topological insulators and superconductors made
from free fermions in arbitrary dimensions have been classified

via K theory: Kitaev; via edge theories: Ryu, Schnyder, Furusaki, Ludwig

A well-known example is the integer quantum Hall effect.

This, however, is not the simplest example...



The quantum Ising chain

Yes, the one Onsager solved in the ‘40s ...
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The partition function of a two-dimensional ‘“ferro-
magnetic”’ with scalar “spins’’ (Ising model) is computed
rigorously for the case of vanishing field. The eigenwert
problem involved in the corresponding computation for a
long strip crystal of finite width (z atoms), joined straight
to itself around a cylinder, is solved by direct product
decomposition; in the special case #=« an integral
replaces a sum. The choice of different interaction energies
(£J, £J") in the (01) and (10) directions does not
complicate the problem. The two-way infinite crystal has
an order-disorder transition at a temperature T=1T given
by the condition

sinh(2J/kT.) sinh(2J'/kT,) =1.

57 years later, Kitaev made a trivial-but-profound observation:

The energy is a continuous function of T'; but the specific
heat becomes infinite as —log |T—7T.|. For strips of
finite width, the maximum of the specific heat increases
linearly with log #. The order-converting dual transfor-
mation invented by Kramers and Wannier effects a simple
automorphism of the basis of the quaternion algebra which
is natural to the problem in hand. In addition to the
thermodynamic properties of the massive crystal, the free
energy of a (0 1) boundary between areas of opposite order
is computed; on this basis the mean ordered length of a
strip crystal is

(exp (2J/kT) tanh(2J'/kT))".



Fermions exist in nature

The easiest way to solve the 2d Ising model is to follow
Kaufmann and map it on to free fermions. In the 1d quantum
chain limit, this amounts to a Jordan-Wigner transformation.

If your physical system is comprised of spins, then this is a
mathematical trick.

But if your physical system is comprised of fermions...
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Abstract

Certain one-dimensional Fermi systems have an energy gap in the
bulk spectrum while boundary states are described by one Majorana
operator per boundary point. A finite system of length L possesses two
ground states with an energy difference proportional to exp(—L/ly)
and different fermionic parities. Such systems can be used as qubits
since they are intrinsically immune to decoherence. The property of a
system to have boundary Majorana fermions is expressed as a condi-
tion on the bulk electron spectrum. The condition is satisfied in the
presence of an arbitrary small energy gap induced by proximity of a
3-dimensional p-wave superconductor, provided that the normal spec-
trum has an odd number of Fermi points in each half of the Brillouin
zone (each spin component counts separately).



In terms of fermions, the quaTnELum Ising chain includes a
Cooper-pairing interaction C,C,,, + C,C,., , so fermion number
is only conserved mod 2.

As a consequence, the fermions are Majorana: they have a single
fermi point. In old-folks language, there is no fermion doubling.

Open boundary conditions in the Ising ordered phase yield
edge zero modes in the fermion picture.

Ising order corresponds to topological order!

And this has probably been seen experimentally!



Majoranas are not the end of the story

Interacting systems such as the fractional quantum Hall effect
exhibit still more interesting behavior: charge fractionalization,
universal topological guantum computation...

Understanding the physics here is much more difficult.

A basic thing to do is to add local fermion interactions. In 1d, this
results in a classification very similar to that of free-fermi systems.

Fidkowski and Kitaev



A different approach to topological order
for interacting systems

1d ““spin”’ systems with Z symmetry can be mapped onto
parafermions. These in general are not perturbations of free

fermions, and are strongly interacting.

Nonetheless, in 1d they can have edge zero modes, just like
Majorana/lsing.

A byproduct is that we learn something very interesting about
the integrable chiral Potts model.

Moreover, there are 2d spin models, a la Kitaev honeycomb
model, that are parafermions plus a background gauge field.



Outline

Edge/zero modes in the Ising/Majorana chain

Edge/zero modes in the 3-state (chiral) clock chain using
parafermions
only if spatial-parity and time-reversal symmetries are broken!

Parafermions, the chiral Potts model and the Onsager algebra
coming full circle!

2d quantum systems with Z_symmetry
topological order here?



Quantum chains

* Both for physics and technical reasons, it is better here to
study one-dimensional quantum chains instead of 2d classical
models

 The 2d classical Ising model consists of a Z, “spin” variable at
each site of some 2d lattice, with nearest-neighbor
interactions.

 The quantum Ising Hamiltonian for an L-site chain then acts
on a 2"-dimensional vector space. This comes from taking an
extremely anisotropic limit of the classical transfer matrix.



How to fermionize the quantum Ising chain

H = Z ffg —I—chjfcfjﬂ}

flip term interaction

Critical point is when J = f, ordered phase is J > .

ZQ symmetry operator is flipping all spins:

Hj U;'j



Jordan-Wigner transformation
in terms of Majorana fermions

. R T Y X
VY = 0; Hfﬂ;, Xi = 9; HUz‘
i<j\ /,z’<j

string

Wi i} =AXi, X5} = 26i,  {¥i, x51 =0

ZQ symmetry measures even or odd number of fermions:

(—1)" =1L o7 = TL(ivbix ;)



The Hamiltonian in terms of fermions

* with free boundary conditions:

N —~N_ — N —~ N —~ N —ANA—AN
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e with periodic boundary conditions on the fermions:
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A catch: when written in terms of spins, this is twisted by —(—1)*



Extreme limits:
« J =0 (disordered in spin language):
\ \ \ \ \ \ \ \
@O @O @O @O @O @O @O @O

* f=0(orderedin spin language):

~ N7 N7 N7 N NN N
@O @O @O @O @O @O @O @O

The fermions on the edges, ¥, and ¥, ,do not appear in H
when f =0. They commute with H!



Exact edge zero modes in the ordered phase

* When f =0, the operators X; and ¥, map one ground state
to the other — they form an exact zero mode.

* The gapless edge modes persist for all f < J : the series
2
S f

commutes with H.

* Inthe ordered phase f < J, thisis is localized near the edge.



Spin order == topological order

For non-abelian topological order degeneracies are necessary,
so that braiding can change states.

The 1d edge zero mode commutes with H, but not with (-1
It thus means that all states are two-fold degenerate.

Only way to change between states is to add a fermion, or to
do a non-local operation (act at both ends).

The non-local transformation between spins and fermions is a
feature! It makes the degeneracy robust.



How does one characterize 1d topological order
with periodic boundary conditions?

Simple way for 1d: can show it depends on (—I)Fof ground state.

Even fancier way: compute sign of Pfaffian.

For the experts: this is the 1d analog of the 2d Chern number.



On to the Z case:

Fradkin and Kadanoff showed long ago that 2d spin models
with Z, symmetry can be written in terms of parafermions.

Fateev and Zamolodchikov found integrable critical self-dual
lattice spin models with Zn symmetry. Later they found an
elegant CFT description of the continuum limit.

Read and Rezayi constructed fractional quantum Hall
wavefunctions using the CFT parafermion correlators.



The 3-state (chiral) clock model

The quantum chain version of the 3-state clock/Potts model:

H = — Z {f(ij—l— Tj) + J(U;r.ajﬂ ;—h.e.)}

flip is now “shift” “clock” potential

01 0 10 0
=10 0 1], o=(0 ™7 0
1 O O 0 0 8—27T7j/3




A quantum information tangent:
“SIC-POVM” conjecture

Consider n-dimensional complex unit vectors:

_ . T _
2=(2,2,5---2,); 7 -z=1
2
The conjecture is that there are n’ vectors, 7z, 2
that are equidistant” -- their inner products are all the same:
127z F = L i # j
n+1

It seems that these are all given by acting by shift and clock on
a single vector!

Zauner; Renes, Blume-Kohout, Scott and Caves



Define parafermions just like fermions:

In a 2d classical theory, they’re the product of order and
disorder operators. In the quantum chain,

wj:ffj”%;, Xj:TjUan

i< 1<
WP=xt=1, ¢? =y’ x?=y

Instead of anticommutators, fort <jand y =y or y:

27i/3

Y.v,=¢ VY



The Hamiltonian in terms of parafermions:

NAN_—~N_—~N_—~ /\/\/\/\%/\ N

@O @O @O @O @O @O
A= F@Ix + xy) T~ = JWh X+ X))
shift term potential

These parafermions are not perturbations of free fermions — they
cube to 1. The model isn’t even integrable unless J = f.

However, when f =0, there are edge zero modes!

~ N7 N7 N7 NN NN
@O @O @O @O @O @O @O @O



Does the zero mode remainfor J > f >0 7?

We can’t cheat like in the Ising chain and just solve the model.

Since X,V involve the shift, a zero mode maps between Z,
sectors. For 4 sites and f=J/2, the spectrum is

E
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Doesn’t look like there is a zero mode...



So let’s think about a maybe-easier problem:
periodic boundary conditions

A parafermion shift” mode shifts the energy uniformly between
7., sectors, i.e.

[H,Y]=(AE)Y
If AF=(0 then we have a zero mode.

There is a shift mode only if the couplings obey an interesting
constraint!



Generalize to the chiral clock model:

2wi/3 -2 mi/3
€

, , the most

For classical spin variables §; = I,e
general nearest-neighbor interaction is
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ferromagnet: Chiral interactions:

¢=0 ¢ #0 modrm /3



ferromagnet symmetric antiferromagnet
e
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In the quantum Hamiltonian:

N —~N — N\ —~ N —~ N —ANA—AN
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A= f(ei‘bw;rxj + €_i¢X;¢j) = J(€i9¢;+1Xj + e_wxj-wjﬂ)



Look for a shift mode in the chiral model linear in the parafermions:

U= lajb + Gl
j

Then a 10-minute computation finds an exact shift mode
if the couplings obey:

fcos(3¢) = J cos(30)



fcos(3¢) = J cos(30)

This calculation is the world’s easiest way of finding the
couplings of the integrable chiral Potts chain.

Howes, Kadanoff and den Nijs; von Gehlen and Rittenberg; Albertini, McCoy, Perk
and Tang; Baxter; Bazhanov and Stroganov

The integrable chiral Potts model is quite peculiar. The
Boltzmann weights of the 2d classical analog are
parameterized by higher genus Riemann surfaces instead of
theta functions. They satisfy a generalized Yang-Baxter
equation with no difference property. They are also 2d
reductions of solvable 3d classical models.



The “superintegrable” line @ =@ = 7T / 6 is very special.
Here the shift mode occurs for all values of f and J.

This is the symmetric case, halfway between ferro and
antiferromagnet, where the spectrum is invariant under H—>-H.

Taking commutators of the these, one finds remarkable
simplifications. They satisfy the Onsager algebra.

The identical algebra Onsager used to solve the Ising model
originally also occurs in the chiral Potts models!

This allows the explicit construction of an infinite series of
guantities commuting with the Hamiltonian.

von Gehlen and Rittenberg



Back to the edge

For 4 sites and f=J/2, the spectrum of open chain with¢=0=7/6:
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The levels in three sectors get exponentially close as the number
of sites is increased. Looks like the edge zero mode remains for f//>0!



Finding the edge zero is not easy as with Ising. We can try to
find it iteratively.

Split the Hamiltonian into flip terms and potential terms:
H=fT+JV
The parafermions on the edge obey

[Vaxl] — [Val//L] =0.

Then if there is an X such that
[T, x, 1=V, X]
The zero mode on the left edge becomes

X, —§X+...



[T’XI] — [V9X]

Thus the question is: can V be “inverted” to find X ?

For Ising, T and V are are free-fermion bilinears, so it’s easy:

X+ ijﬁ

But parafermion commutation relations are not so nice:

FAZR7A R A



Saywewant [V, X |=1/, . Then X must be a linear combination

X=Ay, +By,+Cyy,

2%2 with
() (0 I ST A )
B/ — 2l e—ie O _eiea—) B
. C" 0 e’ 0 )\ C )

2 7il3
where @ = ¢°™" .

V can be inverted if this matrix can be inverted!



The determinant is —16J°sin(30) , non-zero for the chiral case

60 modr/3

No edge zero mode for ferromagnet or antiferromagnet!

f
2J sin(30)

expansion parameter is

Zero modeis X; — 2l°f€_i¢X+ 2l'f€i¢)(1TY+--. ’

1

X= . !
4J sin(30)
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-2i0 ., 7T

X0 +eloyx)




Perhaps not surprisingly, | do not have a closed-form expression
for the edge zero mode in general.

Brute force not only gets extremely unwieldy, but after next order,
no longer works!

But using by treating this matrix as a sort of Hamiltonian on
the vector space of all parafermion operators, one can do
degenerate perturbation theory and prove that the edge zero
mode exists to all orders, as long as the interactions are chiral!



He didn’t know this orginally, but in the Ising case, the Onsager
algebra is simply that of (zero-momentum) fermion bilinears!

Thus a miracle of the superintegrable chiral Potts model is that
despite its not being a free-fermion theory, the algebra generated

by the two parts of the Hamiltonian is identical to that of fermion
bilinears.

In the Z, case, maybe parafermions can be used to
find a Pfaffian-ish formula to detect topological
order ?!? The Read-Rezayian?!?



Topological order in two spatial
dimensions

Even more remarkably, these correspondences can be extended to
2d quantum models, where anyons exist!

The Kitaev honeycomb model is a spin model with nearest-neighbor
interactions. By exploiting a non-obvious gauge symmetry, it can be

mapped on to free fermions with a background gauge field.

Breaking time-reversal symmetry results in topological order!

A similar model can be found for parafermions. However, it’s not
exactly solvable, so is it topologically ordered?

Correspondence to quantum loop models?



Questions

The 1d case hints that in 2d we should include these chiral
phases. But how to do this precisely?

|s there a "Read-Rezayian” formula for the parafermions
generalizing the Pfaffian/Chern number for fermions?

Is there a connection to 2+1d integrable models?

This is not just formal — actual experimental proposals have
been made using FQHE edges.

Clarke, Alicea, Shtengel; Lindner, Berg, Refeal, and Stern

Does this say anything interesting about Zn magnets?



