Hyperbolic Magnetic Monopoles

Joseph Chan Supervised by Paul Norbury University of Melbourne December 2012

Outline

- 1. Why study magnetic monopoles?
- 2. The setting: hyperbolic space, negative curvature.
- 3. SU(N) Yang-Mills-Higgs, Bogolmonyi and boundary conditions.
- 4. The spectral curve.
- 5. Holomorphic spheres for SU(2).
- 6. The general SU(N) case.

Why study magnetic monopoles?

- The Standard Model is a (quantised) Yang-Mills-Higgs (YMH) gauge field theory:
- The strong force SU(3)
- The weak force SU(2) × U(1)
 Want a Grand Unified Theory (GUT) [Polchinski].

The Dirac Quantisation Condition.

Kapustin-Witten paper on S-duality and the Geometric Langlands.

Example of integrable system/soliton behaviour.

The Setting

Hyperbolic space, \mathbb{H}^3 with geodesics specified by points in $\mathbb{P}^1 \times \mathbb{P}^1$ (twistor space).

SU(N) YMH and Bogolmonyi

The YMH equations are conditions on

- An SU(N) principal bundle connection ${\cal A}\,$.
- A section of the adjoint bundle (scalar field) called the Higgs field Φ .

All of which are $\mathfrak{su}(N)$ -valued.

The Bogolmonyi equations minimise the energy of the YMH equations. They are nonlinear conditions on the curvature F_A and the derivative of the Higgs field $D_A \Phi$.

Boundary Conditions

Hyperbolic monopoles are determined by their boundary data [Austin and Braam].

- By choice of gauge, the boundary data for the Higgs field $\Phi\,$ takes of form of diagonal matrices with
- Mass data: $\lambda_1, \lambda_2, \ldots, \lambda_{N-1}$
- Charges (always integral): $n_1, n_2, \ldots, n_{N-1}$

SU(2) Spectral Curve, $\Sigma \subset \mathbb{P}^1 \times \mathbb{P}^1$

The geodesics for which there are solutions of the scattering given by the Higgs field Φ which decay at $\pm\infty$ lies on a curve ψ [Hitchin].

SU(2) Holomorphic Spheres, $q : \mathbb{P}^1 \to \mathbb{P}^n$ The spectral curve is exactly given by $\langle q(\hat{w}), q(z) \rangle$ and the curvature is the pullback of the Kähler form [Murray, Norbury, Singer].

SU(N) Spectral Curves

For SU(N), there is a curve for each vertex of the Dynkin diagram and for each edge, the intersection of the curves is the union of two components [Murray, Singer].

SU(N) Holomorphic Spheres?

Step 1: Compute examples of SU(N) spectral curves. No explicit examples in the literature.

References

- [Atiyah] Atiyah, Instantons in Two and Four Dimensions, 1984.
- [Austin, Braam] Austin, Braam, Boundary Values of Hyperbolic Monopoles, 1990.
- [Murray, Singer] Murray, Singer, Spectral Curves of Non-Integral Hyperbolic Monopoles, 1996.
- [Murray, Norbury, Singer] Murray, Norbury, Singer, Hyperbolic Monopoles and Holomorphic Spheres, 2003.
- [Polchinski] Polchinski, *Monopoles, Duality and String Theory*, 2003.