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Staeckel 1891 found separable forms of Hamilton-Jacobi eq. 
Method applies also to linear eigenfn probs., e.g. Schroedinger.
Staeckel matrix has entries sij = function of xi .  e.g. for N=2,

T = inverse of S.
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Demand that L1 operator equates to target Helmholtz operator
involving Laplace-Beltrami operator 
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1 @2
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2 @2

2 +
@1(H2/H1)
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Equating 1st order terms,

u =  e�R(x) = u1(x
1)u2(x

2)
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For separation of Schroedinger eq., we need R-separation
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For N>2, this identification implies Robertson conditions,
studied by Robertson and Eisenhart since 1920s.
This inverse construction of separable eqs. leads to 
all known integrable Schroedinger equations.

T21 = �3T11/g2⇧
2
2 (�3 2 <)with

H2/H1 = ⇧1(x
1)⇧2(x

2)

Extending the identification of L1 with Helmholtz at all orders,
we deduce
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Theorem:  With Lj constructed as above, [Li,Lj]=0 .
 (L1= Hamiltonian H).

The Staeckel construction results in a complete set of commuting 
self-adjoint operators, as well as the class of allowable potentials.
Example: with plane polar coords, 

x

1 = r ; x

2 = ✓ ; ⇧1 = r ; ⇧2 = 1 .

R =

�1

2

log r

Identify L1 with Helmholtz , L1 = � + �(r, ✓) ,

deduce                                and � = v1(r) + r�2v2(✓)�
1

4
r�2.

r-2 potential is familiar from reduction of variables in Kepler prob
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H 0
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For quantum hydrogen atom,

L3 = @2
� = �3 
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Question: Analogous to non-classical symmetry reductions, can we 
generalize the Staeckel construction to find non-regular separation 
that is valid when some constraint applies ?

 t = �� + V (r) ;

T t +Xi ,i = U

Nonclassical Lie symmetry leaves invariant a system of eqs
consisting of target PDE plus invariant surface cond (a constraint).

t̄ = t+ ✏T (t, xi, ) +O(✏2) ; x̄i = xi +Xi(t, xj , ) +O(✏2)

 ̄ =  + ✏U(t, xi, ) +O(✏2)

e.g. applied to Schroedinger + ISC
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Generalized Staeckel matrix: as above but now one or more 
columns including   SiN (x) can depend on all xj .

Thm.  With only N’th column being non-Staeckel, [Li,Lj]=0  
on zero-eigenspace of LN.

This leads to special (non-regular) separated solutions, 
compatible with some constraints LN=0 .
For N=2, we can prove that no new separable Schrödinger 
eqs occur (even with magnetic vector potential as well as 
electrostatic scalar potential). 
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u =  e�R(x) = u1(x
1)u2(x

2)

Schroedinger eq. in Cartesian coords. for charged particle in 
electromagnetic field in Euclidean space.

More generally, extend r2 !

r.a ! @ām
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m
�

i
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ḡ

@
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(āi

p
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and extend direct separation to R-separation
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#
,

E.g. for N=2 generalized Staeckel construction, with no mag field,

with T21 now general. However, T11 and T12 are same as in 
complete Staeckel construction and these determine components 
of allowable metric and allowable scalar potential. 
With N=2, no new Schroedinger eqs can be solved by incomplete 
Staeckel construction. 
Same no-go theorem applies when electromag field is included.
N >2: incomplete Staeckel leads to new examples of separable 
systems.
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New separable solutions may occur for 2D solute transport,

@tc+ [q1@1 + q2@2]c = �c� µ(x)c

but only when gij is not separated, g11/g12 =H12/H22 ≠ gi(x1)hi(x2),

It is a non-trivial task even to find examples of this in E2 .

Although the parabolic solute transport eq resembles the hyperbolic 
Schroedinger eq with magnetic field, incomplete Staeckel 
construction now allows extra freedom because the first-order terms 
are real. 

@1(H
2
2q

2)� @2(H
2
1q

1) 6= 0implying                                                          .

advection       dispersion   adsorption
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Since we may replace x1 by a function of x1 and we may multiply a 
column of S by a scalar function,  to investigate admissible separable 
equations, assume canonical form

S =

✓
1 1
1 f(u, v)

◆
. T=S-1

Condition of zero Gauss curvature is

g11 = T�1
11 = 1� 1

f
; g22 = T�1

12 = 1� f

Note: conformal maps don’t change g11/g22  -  not interesting

0 = fuu + 2f�3f2
v � f�2fvv �

(f + 1)f2
u

2f(f � 1)
+

(f + 1)f2
v

2f3(f � 1)
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Example in E2. 

ds
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2 + dy
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p
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.

Here x = (u+ v) cos(�� u), y = (u+ v) sin(�� u),
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⌘
� 2 arctan
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2

!
,

and |u+ v| � 2.

After separating t variable from solute eq, Helmholtz eigenval eq is 
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The separation equations are 

(@uu + U(u)� E) (1)(u) = 0,

(@vv + V (v)� E) (2)(v) = 0,

with  =  (1)(u) (2)(v).

Taking simplest case U=V=0, direct separation is possible with R=0. 

 =

Z 1

0
A(!)e�!2t

cos(![u+ �(!)])cos(![v + "(!)])d!
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(H1)
2q1 = �(H2)

2q2 = 1/
p

(u+ v)2 � 4 = [r2 � 4]�0.5.

Squared magnitude of velocity is 

(q1)2e1.e1 + (q2)2e2.e2 = H2
1 (q

1)2 +H2
2 (q

2)2 =
1

r2 � 4

This is not a realistic fluid velocity but it gives the only known 
example of separation in 2D by incomplete Staeckel matrix. 
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For orthogonal coords (u,v),

implies   
x
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Exact differential dy implies  
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H ⌘
NX

i=1

H�2
i u,2i +V (x) = E.

Hamilton-Jacobi equation 

Theorem:  If a  natural Hamiltonian H admits maximal 
nonregular separation  on the submanifold Ln=0 in a given 
orthogonal coordinate system, 
then the system is separable with a side condition and can be 
constructed with a generalized Staeckel matrix.
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