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Combinatorial Understanding of Product forms: Alternating Sign
Matrices

e N x N matrices Aj;

e Aje{-1,0,1}

° ZiAij =1

o ZJ. Aj=1

e Alternate in sign and +1 first
e Example N = 3:
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e Use column-transfer matrix equation:

Z(y) =T'Z(y)

e Initial: y = y{ < yj <--- <y, same parity.

e Finab y=y1 <y < - <yn.
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Partial Difference Equations

Z(y;t+1)=TZ(y; t)
Split into 1 + F, cases:
e Bulki yy <yp < - <ypn
Zyit+1) = > o > Z(y+et)
ele{il} eNE{il}
e Osculations: One equation for each possible osculation case.
e Example N =3
Z(y;t+1) =wZ(y1,y1,y3t), yn=y2<ys
Z(yit+1) =wZ(y1,y2,y2:t), N <y2=ys

e [nitial Condition: N
Z(y; O) = H 5y,-,y,-’
i=1

withy1 <ys <---<ynyand y; <yb <--- <yp.
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e Z(y;t) € Z|w] — a sequence of integer coefficient polynomials

in w.
t
Yi . 1
X; (X, + )
i=1 Xi

e Bulk:
o ZB(x;y,t) € Z[[x]] where x = xq, ... xn

=

Z8(x;y,t) =

e For any permutation 0 = 0105 ...0y € Sp:
B
Z%(Xgyy - Xop: Y5 t)

is also a solution.

e N! solutions to try solve osculating equations



Osculating Equations

e Osculating: (Coordinate Bethe Ansatz)

Z%x;y, t) = (x,- + 1>t D7 Ac(wix) Z8(x01y)

X
! O'GSN

where X, = Xg,, Xgys - -+ Xop -



Osculating Equations

e Osculating: (Coordinate Bethe Ansatz)

Z%x;y, t) = (x,- + 1>t D7 Ac(wix) Z8(x01y)

Xi O'GSN
where X, = Xg,, Xgys - -+ Xop -
e Solved by
P b e Mo+t
g )\A _ / 2 1 1 .
iAj — wxi/X Xj

(ij)Els

where [, is the set of inversions of o.



Osculating Equations

e Osculating: (Coordinate Bethe Ansatz)

Z%x;y, t) = (x,- + 1>t D7 Ac(wix) Z8(x01y)

Xi O'GSN
where X, = Xg,, Xgys - -+ Xop -
e Solved by
P b e Mo+t
g )\A _ / 2 1 1 .
iAj — wxi/X Xj

(ij)Els

where [, is the set of inversions of o.

e Solution is now a rational function Z9 e Z((x)).
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e Osculating: (Coordinate Bethe Ansatz)

Z%x;y, t) = (x,- + 1>t D7 Ac(wix) Z8(x01y)

Xi O'GSN
where X, = Xg,, Xgys - -+ Xop -
e Solved by
P b e Mo+t
g )\A _ / 2 1 1 .
iAj — wxi/X Xj

(ij)Els

where [, is the set of inversions of o.
e Solution is now a rational function Z9 e Z((x)).

e Finally, the initial condition...
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Initial Condition

N
e Initial condition: Z(y,y’;t =0) = H‘Syi,y-'
i=1

Need to:
o ‘Get rid' of x
e Add back initial heights y’

Idea: ‘integrate out’ the x:
Take residues + Z© rational = “Constant Term”

o Try

Z(y«<y;t=0)=CT [xy/ 79 (x;y, 0)]

But its no good.
Need more solutions...
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o Z9 with x; — — still a solution

Xj
e Gives 2V more solutions
e Interesting: 2VN! — Weyl group of signed permutations.

e Linear combination

Z(y«—y;t=0)=CT Zc xxy 70 (x1 ,xé“,...,x,’&"’;y,O)
X
where x; = +1 and xX¥' = ]_[,-x,-x"y’!.
e Look for patterns for ¢,'s (then prove by induction)

e To give...



The total number of t-step ‘watermelon’ osculating paths starting
aty’ and ending aty is given by

Z(y —yit,w) = CT[/\chXZA X, W H X2 ]

€S,

where x; = +1, and

1 ifx=(1..., =1, xi, =1, -, —1):xi=+1, 1<i<
ox =4-1 if x=(=1,..., =Ty 5y =Thy 0 0 0 5 “):ixi=+1, " <i<n
0 otherwise

for n odd (and similar for even) and A, = [ (x; + x;%).

For proof see: Brak & Wellington arXiv:1207.5268
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e Corollary: w =0 = non-intersecting
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e Ay(w=0) = sign(o)
o Z(y < y';t) is a determinant.
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