Flux-quantization by Backlund transformations

in a model of electrodiffusion

based on Painlevé ||

Tony Bracken
Centre for Mathematical Physics
and
Department of Mathematics

University of Queensland

(with Ludvik Bass and Colin Rogers)

Inaugural ANZAMP Meeting, Lorne, December, 2012



A simple problem in steady-state electrodiffusion:

(Nernst 1888, Planck 1890, Grafov & Chernenko 1962,
Bass 1964)

Oy = —Dycy'(x) + (2¢Dy [KT) B(z) e (x)
®_ =—-D_c_ '(2)— (2eD_/KT) E(x) c_(x)

E'(x) = (4mze/e) [ey(a) — c—(2)

for 0 < x < o.
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Oy = —Dycy'(x) + (2¢Dy [KT) B(z) e (x)
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E'(x) = (4mze/e) [ey(a) — c—(2)

for 0 < x < o.

Current density: J=ze(dy — D)



In dimensionless form:

NE'(z) = cp(z) — c_(2)

for 0 < x < 1, and
J:Oz+<1>+—oz_<1)_

Here a4+ > 0 are known constants, with oy + a— =1



and

1 ekT
A= — > ()
0 \| 4mz2e? e, f

Planck took A =~ 0, implying electroneutrality:
cr(z) = c(x) = c(x) = ¢(0) + [e(1) — c(0)]z

E(r) = (P4 — @-)/2¢(x), P4+ P =2[c(0) —c(1)]

J=a4P —a_d_(=Jy, say)

— only an approximate solution of the system of ODEs.



When E(x) = 0, Planck’s approximate solution becomes exact:



A typical BV problem:
Given the BCs

c+(0) = c—(0) = cg

cr(1) =c(1) = ¢

find



A typical BV problem:
Given the BCs

c+(0) = c—(0) = ¢
cr(l) =c-(1) =

J = Jy
find
cy(x), c—(x), FEx), Ip, I_
Planck's exact solution is a (the?) solution when

Jo = (a4 — a—)|cp — ]



A first-integral:

et (z) 4+ c—(z)



A first-integral:

e (@) + e (z) = B(w)er(x) — o (2)] — (@4 + D)

= MNE(z)E'(z) — (D + D_)

= ci(r) +e—(2) = NE(x)* — (o4 + )z + B



which implies

)\ZE”(x) =
INE(x)? — {(04 + @)z — B} E(z) — (04 — O_)

— a form of Painlevé Il.



For the preceding BV problem,

NE(x) = INE(2)
- {<<p+ L d_)x — 20+ %)\QE(O)Q} B(z) — (O — d_)

subject to F/(0) = 0= E'(1) , with

Py + & = 2e — 1) + N (1) ~ E(O)]

Oé_|_q)_|_ —a_d_ = JO



PII: y'(x) =2y(x)> +ay(z) + C

Backlund transformation:

g(a) = —y(z) — 2C +1)/[2¢/ () + 2y(x)* + ]

N

C=C+1 (Here C+# —1/2)

Inverse transformation:

AN

C—1 (Here C#1/2)

Q
]



Backlund transformation 5
o1 (2) = e () — 2204 B(z)/cr (x) + 222042 /c. (z)

i(2) = cilo), B(x) = —E(x) + 20, fes (a)

AN AN

b =20, +P_, d_=—P,

Inverse transformation B_li

c_(z) = ¢o(x) + 20°D_ E(x)/é—(x) + 20°D% Je_(z)?

—E(z) —20_ /¢ (x)
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b, =—-d_, d_=20_+d



From any solution S0) = (c@ ,c<_o> ,E(O) : CDSB) : CD(_O>)

we construct the sequence of solutions

forn=0,£1,%£2,...
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Starting with Planck’s exact solution as S0 we get a sequence
of exact (rational) solutions.



From any solution S0) = (c@ ,c(_o> ,E(O) ,CD@ ,CD(_O>)

we construct the sequence of solutions

forn=0,£1,%£2,...

Starting with Planck’s exact solution as S0 we get a sequence
of exact (rational) solutions. For example, with

Doy=1/3, Lay=2/3, r=01

we get:
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Figure 1: Graphs of c(f) (x) forn=0,1,2,3,4, from bottom to top.
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Figure 2: Graphs of c(f) (x) forn=5,6,7,8.



For the solution S(™) we have

" = (n+ 1ol +n0” 0" = —(n - 1)0Y — no¥

and hence

J = 7O pnag . AT = @ 1 o)

— flux-quantization by Backlund transformations.




Physical interpretation

In dimensional form:

I = e (CIDS@ — <I><_n)> — JJ(rn) - J(_n>, say .

RUBIG

J = JO L pAT, AJ =ze(Dy + D) St
+ _



To simplify the discussion take D = D_ = D; then

o = 0" = D(cy — e1)/0
JJ(FO) = —J<_O> = zeD(cog—c1)/96,

JO =0, AJ= 4zeD(cy— c1)/6 .



and then
JJ(rn) =2n+1)ze D (cg—c1)/0
J(_n) =(2n—1)zeD (cyg— 1)/

JW =04+ nAT = dnze D (co— 1)/



Consider the “number” of ions transported across area A
In a time 7.

For the “state” S(”), we have



Consider A such that ny =n_ ~ 1
— A= 5/D(CO — 61)7'

[In the state S0), transport is purely diffusional, since

EW(z) =0, so 7~ §2/2D, and hence

A= 2/(cy—c1)d ]



Then, for this same area A and time T,

Jg_m.AT = (2n+ 1)ze, J<_n>AT = (2n — 1)ze

J(n>AT = 4dnze



Then, for this same area A and time T,

Jg_mAT = (2n+ 1)ze, J<_n>AT = (2n — 1)ze

J(n>AT = 4nze
Thus: In the state S(0):

One positive ion diffuses across A in time 7 in +x-direction.
One negative ion diffuses across A in time 7 in +x-direction.

Zero net charge across A in time 7. ( J(U) Ar = ()



In the state S1):

S0

L =3ze, J<_1)

— Z€

Three positive ions across A in time 7 in +x-direction.
One negative ion across A in time 7 in —z-direction.

Net charge across A in time 7 in +x-direction equals 4ze.



In the state S(—1):

S0 S0 _

L= —ze, = —3ze

One positive ion across A in time 7 in —z-direction.
Three negative ions across A in time 7 in +x-direction.

Net charge across A in time 7 in +x-direction equals —4ze.



In the state S(—1):

JJ(:) = —ze, J(_l) = —3ze

One positive ion across A in time 7 in —z-direction.
Three negative ions across A in time 7 in +x-direction.

Net charge across A in time 7 in +x-direction equals —4ze.

— and so on.



Comments:

e Discreteness underpinning a nonlinear continuum model

reveals itself in special solutions.
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Comments:

e Discreteness underpinning a nonlinear continuum model

reveals itself in special solutions.
e Effect only found 120 years after Planck’'s work.

e Note that flux-quantization persists no matter how small

A is (so long as it is non-zero!).
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