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What would we like to know about a 
(equilibrium/nonequilibrium) 
thermodynamic system? 

• What is the equilibrium distribution function? 
• How do properties evolve out of equilibrium? 
• Can we derive the 2nd Law? 
• Relaxation to equilibrium? 
• Relaxation to a steady state? 
•  Is there only one steady state? 
… 



Plan 
1.  Thermostatted nonequilibrium dynamical systems 

2.  Transient fluctuation theorem 

3.  Thermodynamic interpretation of the dissipation function 

4.  The dissipation theorem 

5.  T-mixing 

6.  Extensions 

•  Relaxation to equilibrium & equilibrium distribution functions 

•  Steady state fluctuation theorem 

 

2nd Law 

Response theory 



• Nonequilibrium molecular dynamics algorithms 
•  Deterministic equations of motion modified to model effects of 

thermodynamic gradients of mechanical forces. 
•  Homogeneous/inhomogeneous: 

•  We select C and D so that equations of motion are reversible 

•  Boundary driven 
•  Wall particles treated different to produce the required flow/transport 

 

1. Thermostatted nonequilibrium 
dynamical systems  

 

qi =
pi
m

+Ci(Γ) iFe
pi = Fi(q) +Di(Γ) iFe

Γ = (q, p) 
qi:  particle position 
pi:  particle momentum 
Ci and Di: couple particles to field, Fe 



Examples: 
•   Homogeneous Couette flow with strain rate 

•  Particles with charge, ci in a field, Fe 

 
•  Boundary driven Couette flow 
 

 

qi =
pi
m

+ iγyi
pi = Fi − iγpyi

1. Thermostatted nonequilibrium dynamical systems 

 

qi =
pi
m

pi = Fi + ciFe

 

Fluid Wall

qi =
pi
m

qi =
pi
m

pi = Fi pi = Fi − k(qxi − qxi0 )i
qxi0 = ± 12 γLy

+
+ +-
-

-
Fe 

 γ



•  Thermostat / ergostat 
•  Various mechanisms – remove heat generated by field 

•  Si is a switch that determines if all particles, or some (e.g. wall 
particles) are thermostatted or ergostatted 

•  A can take on a range of forms: fix kinetic energy (Gauss’s principle 
of least constraint), generate a canonical ensemble… 

•  Can be made arbitrarily far from the system so details of 
thermostatting mechanism do not affect physics of the system 

 

1. Thermostatted nonequilibrium dynamical systems 

 

qi =
pi
m

+Ci(Γ) iFe
pi = Fi(q)+Di(Γ) iFe −Siα(Γ)pi,



1. Thermostatted nonequilibrium dynamical systems 

 ∇Γ i Γ = Λ(= −3Ntα)

StdΓ = dΓe Λ0
t
∫ (SsΓ )ds(= dΓe−3Nt α0

t
∫ (SsΓ )ds )

ft(S
tΓ) = f0(Γ)e

− Λ0
t
∫ (SsΓ )ds(= f0(Γ)e

3Nt α0
t
∫ (SsΓ )ds )

dΓ StdΓ



• General form of fluctuation relations: 

                 is the probability that Xt takes on a value A±dA 

• Wide variety 
•  Transient/ steady state;  different properties in the argument;  

deterministic, stochastic,  limiting expression of valid under all 
conditions 

•  Transient fluctuation theorem for dissipation function of a 
deterministic system: 

 

2. The transient fluctuation theorem  

Pr(Xt = A)
Pr(Xt = −A)

= ...

Pr(Ωt = A)
Pr(Ωt = −A)

= eA

Pr(Xt = A)

Xt = X(SsΓ)ds;0
t
∫ Xt = 1t X(SsΓ)ds0

t
∫



• Derivation 

 

2. The Transient Fluctuation Theorem 

J	

 time	


MT	



Γ*
StΓ*

Γ
StΓ



Γ* StΓ*

Γ
StΓConsider two trajectories related 

by time reversal symmetry.. 
 

Pr(dΓ)
Pr(dΓ* )

= f0 Γ( )dΓ
f0 Γ*( )dΓ*

= f0 Γ( )
f0 S

tΓ( )e
−Λ t (Γ )

≡ eΩt (Γ )

Ωt(Γ) = ln
f0 Γ( )
f0 S

tΓ( ) − Λt
Pr(Ωt = A)
Pr(Ωt = −A)

≡ eA

2. The Transient Fluctuation Theorem 

f0(Γ) ft(Γ)



dΓ* dΓ* (t)

dΓ
dΓ(t)

Now consider the relative 
probability of observing the phase 
volumes      and       : 
 

Define:	


Sum over all        for which :	


Ωt = A

Pr(dΓ)
Pr(dΓ* )

= f0 Γ( )dΓ
f0 Γ*( )dΓ*

= f0 Γ( )
f0 S

tΓ( )e
−Λ t (Γ )

≡ eΩt (Γ )

Pr(Ωt = A)
Pr(Ωt = −A)

≡ eAΩt(Γ) = ln
f0 Γ( )
f0 Γ(t)( ) − Λt

2. The Transient Fluctuation Theorem 

f0(Γ) ft(Γ)

dΓ dΓ*

dΓ



What is the dissipation function in some cases of interest? 
 
•  NVT – field driven nonequilibrium state 
 
 
 
•  System subject to a change in temperature 
 
 
 
 

Evans & Searles, Ad. Phys. 51, 1529-1585 (2002) 
Sevick, Prabhakar, Williams & Searles, Ann. Rev. Phys. Chem. 59, 603-633 (2008) 

Ωt =
Jt
kBT

FeV

Ω = Σ +O(Fe2 ) = dVσ(r)
kBv∫ +O(Fe2 )

Ωt =
1

kBT1
− 1
kBT2

⎛
⎝⎜

⎞
⎠⎟
H0(t)−H0(0)( )

3. Thermodynamic interpretation 



From the FR, can derive: 
 
 
 
 
 
 
equality implies equilibrium. 
 
The time integrated dissipation function can also be 
interpreted as the relative entropy production. 
 
 
 
 

Ωt ≥ 0

3. Thermodynamic interpretation of the dissipation function 



The fluctuation relation can be written: 
 
 

•  as volume, time or field increase the probability of 
observing negative currents decreases exponentially. 

•  in the thermodynamic limit, current is always positive – 
for small systems it is not 

Evans & Searles, Ad. Phys. 51, 1529-1585 (2002) 
Sevick, Prabhakar, Williams & Searles, Ann. Rev. Phys. Chem. 59, 603-633 (2008)  
 

Ωt =
Jt
kBT

FeV

3. Thermodynamic interpretation of the dissipation function 

Pr(Jt = A)
Pr(Jt = −A)

≡ eAVβFet



• The fluctuation theorem: 

• The second law inequality: 
 
 
 

•   Ω is related to the rate of extensive entropy production in 
linear irreversible thermodynamics and relative entropy: 

 
 
 
 
 
 
 

p(Ωt = A)
p(Ωt = −A)

= eA

 
Ω(t) = − J(t)

kBT(t)
FeV = −Λ(t) =

Q(t)
kBT(t)

− J
kBT

FeV = Σ = dV σ(r)
kBv∫

For NVE only! 

p(Σ t = A)
p(Σ t = −A)

= eA

Ωt ≥ 0

3. Thermodynamic interpretation of the dissipation function 



Plan 
1.  Thermostatted nonequilibrium dynamical systems 

2.  Transient fluctuation theorem 

3.  Thermodynamic interpretation of the dissipation function 

4.  The dissipation theorem 

5.  T-mixing 

6.  Extensions 

•  Relaxation to equilibrium & equilibrium distribution functions 

•  Steady state fluctuation theorem 

 



• How do the distribution function and properties evolve 
with time? 

4. The dissipation theorem  

B(t) = B(Γ)∫ ft(Γ)dΓ

f0	

 ft	



Γ Γ

StΓStΓ



• The Lagrangian form of the Liouville equation gives: 

• The time integral of the dissipation function is defined via: 

 

• Substitute for  

 
• This is true for any       , so transform 

 
 
 
 

f0 Γ( )
f0 S

tΓ( )e
−Λ t (Γ ) ≡ eΩt (Γ )

ft(S
tΓ) = e−Λ t (Γ )f0(Γ)

ft(S
tΓ) = eΩt (Γ )f0(S

tΓ)

ft(Γ) = e
Ωt (S

− tΓ )f0(Γ) = e
Ω(SsΓ )− t

0
∫ dsf0(Γ)

4. The dissipation theorem 

f0(Γ)

Γ StΓ → Γ



• Now consider phase variables: 

• We can use the distribution function to evaluate  

 

• By differentiation and integration (for autonomous 
systems)  

  

•  Note that the ensemble averages are wrt to the initial distribution.   

B(t) = B(Γ)∫ ft(Γ)dΓ = B(Γ)∫ e Ω(SsΓ )− t
0
∫ dsf0(Γ)dΓ

B(t) = B(0) + B(s)Ω(0) ds0
t
∫

ft(Γ) = e
Ωt (S

− tΓ )f0(Γ) = e
Ω(SsΓ )− t

0
∫ dsf0(Γ)

4. The dissipation theorem 



Comparison with past work.. 

• Kawasaki - adiabatic (unthermostatted) 
• Evans and Morriss - homogeneously thermostatted 

nonequilibrium dynamics (Gaussian isokinetic) (TTCF) 
•  In linear response regime, gives Green-Kubo, 

fluctuation-dissipation expressions 
• This is more general – arbitrary dynamics, relaxation 
•  Like TTCF is an efficient way of determining phase 

variables at low fields 

Evans, Searles, Williams, JCP, 128 014504(2008); 249901 (2008) 

f(Γ(0), t) = e Ω(Γ(s))− t
0
∫ dsf(Γ(0),0)

4. The dissipation theorem 



• Relaxation to equilibrium (ergodic theory for Hamiltonian 
systems, but open question in others) 

• Derive relationships for equilibrium ensemble 
• Steady state fluctuation theorem 
• Relaxation to steady states 

What can we do with this? 



• Decay of correlations 
• Differs from mixing of ergodic theory - it applies to 

transients 
•  “Infinite time integrals of transient time correlation 

functions of zero mean variables  converge” 

•   A special case of T-mixing is                     for which .  

5. T-mixing 

ds0
∞
∫ A(0)B(s) 0 < ∞

ds0
∞
∫ Ω(0)B(s) 0 < ∞

Ω T −mixing



• What is equilibrium? 
 
 
 
Iff  

 
 
then the initial distribution is the equilibrium distribution. 

Ω(Γ,t) = 0 ∀ Γ,t

ft(Γ) = e
Ω(SsΓ )− t

0
∫ dsf0(Γ)

6. Implications – relaxation to equilibrium  



• Assume a known initial distribution, that is not necessarily 
an equilibrium distribution 

 

 

For thermostatted dynamics, can show that  

 

If t-mixing (transient correlations decay), then eventually  
t>tc the system reaches equilibrium (non-dissipative) state. 

 Ωt = g(t) − g(0) = g(s)g(0) ds0
t
∫

 Ω = g

f0(Γ) =
e−βH(Γ )+g(Γ )

dΓ e−βH(Γ )+g(Γ )∫

 
g(t) = g(0) + g(s)g(0) ds0

tc∫ + g(s) g(0) dstc
t
∫

6. Implications - Relaxation to equilibrium 

 

qi =
pi
m

pi = Fi(q)− α(Γ)pi



Since 

So at long times, there is no dissipation and the system 
must be at equilibrium 

 g(t) g(0) = 0

 

g(t) = g(0) + g(s)g(0) ds0
tc∫ + g(s) g(0) dstc

t
∫

= g(0) + g(s)g(0) ds0
tc∫

 g(t) = g(0) + g(s)g(0) ds0
tc∫

6. Implications - Relaxation to equilibrium 



• Assume unknown distribution – system at equilibrium 
 

 

 

 

For thermostatted dynamics, can show that 

and at equilibrium,           for all       and t.  Therefore g is 
constant, 

 Ω = g

f0(Γ) =
e−βH(Γ )+g(Γ )δ(K −K0 )δ(p − p0 )
dΓ e−βH(Γ )+g(Γ )δ(K −K0 )δ(p − p0 )∫

6. Implications - Relaxation to equilibrium 

f0(Γ) =
e−βH(Γ )δ(K −K0 )δ(p − p0 )
dΓ e−βH(Γ )δ(K −K0 )δ(p − p0 )∫

Ω = 0 Γ



6. Implications – steady state fluctuation 
theorem 

Ωt(Γ) = ln
f0 Γ( )
f0 S

tΓ( ) − Λt
Pr(Ωt = A)
Pr(Ωt = −A)

≡ eA

Pr(Bt = A)
Pr(Bt = −A)

=
f0(Γ)δ(Bt(Γ)− A)dΓ∫
f0(Γ

* )δ(Bt(Γ
* )+ A)dΓ*∫

=
f0(Γ)δ(Bt(Γ)− A)dΓ∫

f0(S
tΓ)δ(Bt(Γ)− A)e

Λ t dΓ∫

=
f0(Γ)δ(Bt(Γ)− A)dΓ∫
e−Ωtδ(Bt(Γ)− A)dΓ∫

= e−Ωt
−1

Bt=A



6. Implications – steady state fluctuation 
theorem 

Pr(Ωτ
ss = A)

Pr(Ωτ
ss = −A)

= e−Ωt
−1

Ωτ
ss=A

= eA e− Ω(SsΓ )0
t0∫ ds− Ω(SsΓ )τ

τ+2 t0∫ ds

Ω

−1

Ωτ
ss=A

Pr(Bt = A)
Pr(Bt = −A)

= e−Ωt
−1

Bt=A

lim
τ→∞

1
τ
ln Pr(Ωτ

ss = A)
Pr(Ωτ

ss = −A)
= A + 1

τ
ln e− Ω(SsΓ )0

t0∫ ds− Ω(SsΓ )τ
τ+2 t0∫ ds

−1

Ωτ
ss=A

B time	


t0	

 t0+τ	

 2t0+τ	



D. J. Searles, L. Rondoni and D. J. Evans, J. Stat. Phys., 128, 1337 (2007) 



What would we like to know about a 
(equilibrium/nonequilibrium) 
thermodynamic system? 

• What is the equilibrium distribution function? 
• How do properties evolve out of equilibrium? 
• Can we derive the 2nd Law? 
• Relaxation to equilibrium? 
• Relaxation to a steady state? 
•  Is there only one steady state? – what happens if multiple 

steady states and/or quasi-equilibrium states? 
… 



7.  Summary 
•  Dissipation function 

•  Central importance in nonequilibrium statistical mechanics - 
appears in the fluctuation theorem, second law inequality, 
dissipation theorem and relaxation theorem 

•  Dissipation theorem 
•  Nonlinear response of phase functions 
•  Shows how a distribution function changes due to application/

change/removal of a field 
•  Relaxation theorem 

•  Shows how system relaxes to equilibrium – can be non-monotonic 
•  Derive equilibrium distribution functions 
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