
Quasi-exactly solvable double Morse potential and

proton tunnelling in hydrogen bonded crystals
by

Davids Agboola

School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

d.agboola@maths.uq.edu.au

Davids Agboola (UQ) Proton Tunnelling in Hydrogen Bonded Crystals d.agboola@maths.uq.edu.au 1 / 36



An overview
Starting from the concept of quasi-exactly solvable quantum systems, we present
solutions to the Schrödinger equation with the double Morse potential, consisting
of two back-to-back Morse functions. The resulting differential equation is found
to be quasi-exactly solvable and closed form energies and wavefunctions are
obtained using the Bethe ansatz method. The results obtained are used as
prototype description for the of hydrogen-bonded crystals CrOOH and CrOOD.

Davids Agboola (UQ) Proton Tunnelling in Hydrogen Bonded Crystals d.agboola@maths.uq.edu.au 2 / 36



Contents

Outline

Part A: Quasi-exactly Solvable Quantum Systems

Brief introduction to quasi-exactly solvable systems
Characterizations of quasi-exactly solvable operators
Exact polynomial solutions to quasi-exactly solvable models.

Part B: Proton Tunnelling in Hydrogen Bonded Crystals: Chromous Acids

Some previous works and experimental results
The double Morse potential
Applications to tunnelling in chromous acids

Part C: Summary & Conclusions

Davids Agboola (UQ) Proton Tunnelling in Hydrogen Bonded Crystals d.agboola@maths.uq.edu.au 3 / 36



PART A
Quasi-exactly Solvable Quantum Systems
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1. Brief Introduction to QES Systems

Basic Definitions

Let Ek and Tk be two linear differential operators of order k which are defined on
a given space H and Mn be a non-trivial finite-dimensional subspace of H defined
by

Mn = 〈φ1, . . . , φn〉, φi ∈ H (1)

then

Definition 1.1 Tk is said to be quasi-exactly solvable (QES) if it preserves
the space Mn i.e TkMn ⊂ Mn. In other words, only a part of the spectrum
is exactly obtainable.

Definition 1.2 Ek is called exactly-solvable , if it preserves the complete flag
of subspace M1 ⊂ M2 ⊂ M3 ⊂ . . .Mn ⊂ . . . . In other words, the spectrum
is completely obtainable exactly.

Definition 1.3 We define a finite-dimensional polynomial space of order n by

Pn+1 = 〈1, x , x2, . . . , xn〉, x ∈ R. (2)
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2. Characterizations of QES Operators

Lie-Algebraic QES Systems

These class of QES systems are characterized with the following results (where
Dx ≡ d

dx
):

Lemma 2.1.

Given that n > (k − 1) [or n ≤ (k − 1)], the operator Tk(x ,Dx) is QES if it can be
represented by a k-th degree [or n-th degree] polynomial of operators

J+ = x2Dx − nx ,

J0 = xDx −
n

2
,

J− = Dx , (3)

which satisfy the sl2 commutation relations
[

J±, J0
]

= ∓J± and [J+, J−] = −2J0.

Davids Agboola (UQ) Proton Tunnelling in Hydrogen Bonded Crystals d.agboola@maths.uq.edu.au 6 / 36



2. Characterizations of QES Operators

Lie-Algebraic QES Systems

Remark 2.3 It is obvious therefore from Lemma 2.1 that among QES
operators, there exist exactly-solvable operators: Ek(x ,Dx) ⊂ Tk(x ,Dx).

Moreover, the above results lead to the following important theorem

Theorem 2.4 [Turbiner, 1994]

Let n be a non-negative integer. The eigenvalue problem for a linear differential
operator of k-th order in one variable

Tk(x ,Dx)φ(x) = εφ(x) (4)

where Tk (x ,Dx) is symmetric, has (n + 1) linearly independent eigenfunctions in
the form of a polynomial in variable x of order not higher than n, if and only if
Tk(x ,Dx) is QES. The problem has an infinite sequence of polynomial
eigenfunctions, if and only if the operator is exactly-solvable.
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2.Characterizations of QES Operators

Non Lie-algebraic QES Systems

It is important to note that not all QES systems are Lie-algebraic. We illustrate
this phenomenon using a following Hamiltonian

The deformed sextic Hamiltonian

Consider the one dimensional Hamiltonian

Hs = −Dxx + V (x) (5)

where

V (x) = A2x6 + 2ABx4 +
(

B2 + (1− 4n)A
)

x2 + 4
x2 − 1

(x2 + 1)2
(6)

is the deformed sextic potential, with

A =
a

n − a
(a− 1/2)

B =
a

n − a

(

3a− 2n+
n

2a
− 1

)

(7)

a being an arbitrary real parameter.
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2. Characterizations of QES Operators

The deformed sextic Hamiltonian

Introducing parameter z = x2 along with the gauge transformation
Ts = µ(z)−1Hsµ(z), where

µ(z) =
1

z + 1
exp

(

−A

4
z2 − B

2
z

)

, (8)

then Hs transforms to
Ts(z) = 4 (T1 + T2 − AT3) (9)

where
T1 = (z − 1)Dzz + (az − a− 1)Dz ,

T2 = Dzz + 2
(

a− 1
1−z

)

Dz − 2a
z−1 ,

T3 = (z − 1) (z − 1− n/a)Dz − n(z − 1)

(10)

It is straightforward to realize that due to the rational term in Ts(z), the operator
does not belong to the class of Lie-algebraic potentials, however, it is QES
because it leaves invariant the module

Mn(z) = 〈1− a(z − 1), (z − 1)2, (z − 1)3, . . . , (z − 1)n〉 (11)
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3. Exact Polynomial Solutions to QES Models

Bethe Ansatz Method

If we consider a second order differential equation of the form
[

P(t)
d2

dt2
+ Q(t)

d

dt
+W (t)

]

S(t) = 0 (12)

where

P(t) =
4

∑

k=0

pk t
k , Q(t) =

3
∑

k=0

qk t
k , W (t) =

2
∑

k=0

wk t
k , (13)

where pk , qk and wk are constants, then we can summarize the main results in
the following theorem

Theorem 3.1. [Zhang, 2012]

Given a pair of polynomials P(t) and Q(t), then the values of the coefficients wk of the

polynomial W (t) such that the differential equation (12) has degree n polynomial

solution

S(t) =
n
∏

i=1

(t − ti ) (14)

with distinct roots t1, t2, . . . , tn are given by
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3. Exact Polynomial Solutions to QES Models

Bethe Ansatz Method

w2 = −n(n − 1)p4 − nq3, (15)

w1 = − [2(n− 1)p4 + q3]

n
∑

i=1

ti − n(n − 1)p3 − nq2, (16)

w0 = − [q3 + 2(n − 1)p4]

n
∑

i=1

t2i − 2p4

n
∑

i<j

ti tj

− [2(n− 1)p3 + q2]

n
∑

i=1

ti − n[(n − 1)p2 + q1], (17)

where the roots t1, t2, . . . , tn satisfy the Bethe ansatz equations

n
∑

j 6=i

2

ti − tj
+

q3t
3
i
+ q2t

2
i
+ q1ti + q0

p4t
4
i
+ p3t

3
i
+ p2t

2
i
+ p1ti + p0

= 0, i = 1, 2, . . . , n (18)

Equations (15)–(18) give all polynomials W (t) such that the differential equation (12)
has degree n polynomial solutions (14).
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3. Exact Polynomial Solutions to QES Models

Corollary 3.2 (A Special Case)

Given that q3 = −2(n− 1)p4, then the ODE (12) has (n+1) polynomial solutions
S(t), because if we write Eq. (12) as

HS(t) = −w0S(t), (19)

then we show that H is an element of the sl2 enveloping algebra Usl2 ,

H = p4J
+J+ + p3J

+J0 + p2J
0J0 + p1J

0J + p0J
−J−+

[

1
2 (3n − 2)p3 + q2

]

J+ + [(n − 1)p2 + q1] J
0

+
(

n
2p1 + q0

)

J− + n
2

[

(n − 1)p2 − n
2p2 + q1

]

.

(20)

Thus, any second order differential operators belonging to Usl2 must have (n + 1)
linearly independent polynomial solutions.
Detailed proofs can be found in Zhang (2012). Also, the above method can be easily
generalized to differential equations with higher degree polynomials P(t), Q(t) and
W (t), provided that degW (t) < degQ(t), see for example Agboola and Zhang (2012),
Agboola (2012).
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PART B
Proton Tunnelling in Hydrogen Bonded Crystals: Chromous Acids
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4. Proton Tunnelling in Chromous Acids

Some previous works

Using infra-red data spectroscopy, Snyder and Ibers (1962), concluded that
the O–H–O bond in HCrO2 (chromous acid) is symmetric, whereas the
O–D–O bond in DCrO2 (deuteriated chromous acid) is asymmetric. And also
suggested the use of a double minimum potential with high barrier for
CrOOD and one with a very low barrier for CrOOH for the spectrum
description of the chromous acid.

Hamilton and Ibers (1963) used neutron diffraction study to further proved
the asymmetric nature of O–D–O bond in polycrystalline DCrO2.

Christensen, Hansen and Lehmann (1976) who performed more extensive
neutron diffraction on CrOOH and CrOOD and concluded that at room
temperature, the O–D–O bonds are non centrosymmetric, while the O–H–O
bond at room temperature is extensively short.

With the help of X-ray diffraction, Douglass (1957) determined the crystal
structure of CrOOH and found that the structure is best refined in the space
group R 3̄m (Trigonal).
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4. Proton Tunnelling in Chromous Acids

Some previous works

Lawrence and Robertson (1981), used the one-dimensional double Morse
potential to analyse the I.R. spectra of both CrOOH and CrOOD. They
pointed out the advantages of the double Morse potential for the description
of the O–H–O bond CrOOH and then used the WKB approximation to solve
the corresponding differential equation.

Using the incoherent inelastic neutron scattering, Tomkinson et al (1985)
obtained a broad band centred at ∼ 2050cm−1, which they assigned to the
|1〉 → |2〉 transition. They showed that the assignment of 1650cm−1 for this
transition is too low and has a poor agreement with experiments.

Motivation

The descriptions of the O–H–O bond in this chromous acids remain problems
of interest because most often, the absorption bands associated directly with
the hydrogen bond are obscured through their interaction with other
vibrational modes of the system being studied. As a result, there is yet no
complete satisfactory explanation for some experimentally observed results.
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4. Proton Tunnelling in Chromous Acids

The Double Morse Well

Figure : Pictorial representation of O–H–O bond in chromous acids
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4. Proton Tunnelling in Chromous Acids

The Double Morse Potential

The double Morse potential is a combination of two back-to-back Morse functions
and its of the form

V (x) = D

[

A2

2
cosh(2αx) − 2A cosh(αx)

]

, A = 2e−α(R−r0) (21)

where D, α, r0 are the usual Morse parameters and 2R is the oxygen-oxygen
separation across the hydrogen bond, and x represents the displacement of the
proton or deuteron from the centre of the hydrogen bond.

Remark 4.1 It is important to note that the parameters D and α should not
be too closely identified with those of the diatomic molecule, as D is not to
be interpreted as a dissociation energy in the present context. For each case,
the parameters of potential (21) are estimated by fitting the model into the
experimental data available.

Remark 4.2The potential V (x) has two minima if and only if A < 2. This

minima are located at x = x± = α−1 ln(ζ), ζ = 1±
√
1−A2

A
. Since ln(ζ) ≥ 0,

then there exist a critical value of Rc determined by the equation
Rc = α−1 ln 2 + r0
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4. Proton Tunnelling in Chromous Acids

The Double Morse Potential

Figure : The double Morse function
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

The one-dimensional Schrödinger equation for a proton (deuteron) of mass µ,
constrained by the potential (21) is given by

ψ′′(x) +
2µ

~2

[

E −D

(

A2

2
cosh(2αx) − 2A cosh(αx)

)]

ψ(x) = 0, −∞ < x <∞ (22)

where E is the energy and ψ(x) is the wavefunction which satisfies the boundary
conditions ψ(±∞) = 0. Extracting the appropriate asymptotic behaviour by
making the transformation of the form

ψ(z) = e−Ax
√

γφ(z), z = coshαx , (23)

we obtain

(z2 − 1)φ′′(z) + zφ′(z) +
[

−2A
√
γz2 + z + 2A

√
γ
]

φ′(z) + Az (2γ −√
γ)φ(z)

=

(

γA2

2
− ξ

)

φ(z), (24)

where
γ =

2µD

~2α2
and ξ =

2µE

~2α2
. (25)
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

Comment 4.3 We shall hereafter refer to γ as the quantum effect
parameter, which will be henceforth treated as an adjustable parameter, due
to the ambiguity in determining the values D and α.

In what follows, we show that (24) is quasi-exactly solvable, i.e has polynomial
solutions of degree n ≥ 0, which we write in the form

φ(z) =
n
∏

i=1

(z − zi ), φ(z) ≡ 1 for n = 0, (26)

where {zi} are the roots of the polynomials to be determined. To solve equation
(24), we apply the functional Bethe ansatz method presented in section 2.
Substituting (26) into (24), we obtain

(z2 − 1)
n

∑

i=1

1

z − zi

n
∑

j 6=i

2

zi − zj
+

[

−2A
√
γz2 + z + 2A

√
γ
]

n
∑

i=1

1

z − zi
+ A

√
γz (2

√
γ − 1) (27)

=

(

γA2

2
− ξ

)
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

The right hand side of this equation is a constant, while the left hand side is a
meromorphic function with simple poles z = zi and singularity at z = ∞. For this
equation to be valid, the left hand side must also be a constant. Thus by
Liouville’s theorem, we demand that the coefficients of the powers of u as well as
the residues at the simple poles of the left hand side be zero. This demand yields
the constraint

√
γ =

(

n +
1

2

)

, (28)

from which the number of bound states can be obtain, depending on the
parameters of the crystals. For instance, by fitting the parameters of the model
with experimental data, Matsushita and Matsubara (1982), obtained the value of
γ−1 = 0.01 for KDP based crystals, thus (by the concept of quasi-exact
solvability) it is possible to find exact energy levels and corresponding
wavefunctions for the first n + 1 = 11 states for such crystals.
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

Furthermore, the exact energy eigenvalues are also obtained as

ξn = 2A
√
γ

n
∑

i=1

zi +
γA2

2
− n2, (29)

with the corresponding wavefunction

ψn(z) = e−Az
√

γ

n
∏

i=1

(z − zi ), z = coshαx , (30)

where the roots {zi} are determined by the Bethe ansatz equations of the form

n
∑

j 6=i

2

zi − zj
=

2A
√
γz2i − zi − 2A

√
γ

z2
i
− 1

. (31)

Comment 4.4 One way to understand the quasi-exact solvability of the
present model is to demonstrate that equation (24) has a hidden sl2
symmetry. This can be shown by expressing the Hamiltonian as a
combination of generators of Lie algebra.
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

Thus, if we write Eq. (24) in the form

Hφ(z) = Eφ(z) (32)

where H and E are given by

H =
(

z2 − 1
) d2

dz2
+
[

−2A
√
γz2 + z + 2A

√
γ
] d

dz
+ A

√
γz (2

√
γ − 1) ,

E =

(

γA2

2
− ξ

)

, (33)

then it can easily be shown that if equation (28) holds, with n being a
non-negative integer, the differential operator H is an element of the enveloping
algebra of the sl2 algebra

H = J0J0 − J−J− − 2A
√
γJ+ + nJ0 + 2A

√
γJ− +

n2

4
. (34)

Moreover, equations (28)-(31) give the exact closed form solutions of the present model.
For instance, one can obtain the exact energies and wavefunctions for some eigenstates
as follows:
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

When n = 0, equations (29) and (30) give

ξ0 =
γA2

2
⇒ E0 =

~
2α2A2γ

4µ

ψ0(z) ∼ e−Az
√
γ , z = cosh(αx). (35)

respectively. This wave function has no nodes and so the state described by
it is the ground state of the system.

When n = 1, we have the first excited state solutions

ξ1 = 2
√
γAz1 + γA2/2− 1 ⇒ E1 =

~
2α2

2µ

(

2
√
γAz1 + γA2/2− 1

)

ψ1(z) ∼ (z − z1)e
−Az

√
γ , z = cosh(αx), (36)

provided z1 satisfies the equation

2A
√
γz21 − z1 − 2A

√
γ = 0 ⇒ z1 =

1

4A
√
γ

(

1±
√

1 + 16A2γ
)

. (37)
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4. Proton Tunnelling in Chromous Acids

Bound states of Double Morse Potential

Similarly, when n = 2 we have the second excited state solution, given by

ξ2 = 2A
√
γ(z1 + z2) + γA2/2− 4 ⇒

E2 =
~
2α2

2µ

[

2A
√
γ(z1 + z2) + γA2/2− 4

]

ψ2(z) ∼ (z − z1)(z − z2)e
−Az

√
γ , z = cosh(αx), (38)

provided z1, z2 satisfy the equations

2

z1 − z2
=

A
√
γz21 − z1 − A

√
γ

z21 − 1

2

z2 − z1
=

A
√
γz22 − z2 − A

√
γ

z22 − 1
. (39)
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4. Proton Tunnelling in Chromous Acids

Applications to Chromous Acids

In this section, we use the results of the previous section to discuss the proton
tunnelling in and CrOOH and CrOOD. For both cases, using the energy bands
obtained from experimental analyses, we obtain the values of the potential
parameters, which are then used in the calculation of the spectrums. We also
assume, as an initial hypothesis, that the assignments of Lawrence and Robertson
(1981) (which are based on Synder and Ibers’ (1962) results) for the CrOOD
spectrum is correct. Thus, we have the following assignments (8.07cm−1= 1 meV)

ω12 ≡ E2 − E1 = 199.98 meV

ω03 ≡ E3 − E0 = 238.42 meV

ω01 ≡ E1 − E0 = 0.87 meV . (40)

The first two assignments were obtained experimentally by Synder and Ibers
(1962), while the last assignment was obtained Lawrence and Robertson (1980),
using the first two assignment. The relevant hydrogen bond lengths obtained by
Hamilton and Iber (1961) for CrOOH and CrOOD which are given as
2.492Å and 2.552Å respectively.
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4. Proton Tunnelling in Chromous Acids

Applications to Chromous Acids

Solving the system ω12 and ω01 for r0 ranging from 0.9Å to 1.0Å and with ~ = 1,
that is, we seek solutions to the non-linear system of equations

α2

2µ

[

2A
√
γ

(

z1 + z2 −
1

4A
√
γ

(

1 +
√

1 + 16A2γ
)

)

− 3

]

= 199.98 meV

α2

2µ

[

1

4A
√
γ

(

1 +
√

1 + 16A2γ
)

− 1

]

= 0.87 meV (41)

where

A = 2e−α(R−r0), γ =
2µD

α2
,

z1 and z2 are obtained from the Bethe ansatz equations (39).

Remark 4.5 In order to make our solutions as analytic as possible, we used
the solve function of the Maple symbolic computational software.
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4. Proton Tunnelling in Chromous Acids

Potential Well Parameter for CrOOD

r0 (Å) α (Å−1) D (eV) z1 z2
0.90 0.51967906 0.000324526 52.34232396 -0.094541541

0.40006160 0.000299285 45.80461389 7.965432749

0.92 0.5196790582 0.000317849 52.34232396 -0.094541541
0.4000615994 0.000294534 45.80461389 7.965432749

0.94 0.5196790582 0.000311310 52.34232396 -0.094541541
0.4000615994 0.000289858 45.80461389 7.965432749

0.96 0.5196790582 0.000304906 52.34232396 -0.094541541
0.4000615994 0.000285257 45.80461389 7.965432749

0.98 0.5196790582 0.000298633 52.34232396 -0.094541541
0.4000615994 0.000280728 45.80461389 7.965432749

1.00 0.5196790582 0.000292489 52.34232396 -0.094541541
0.4000615994 0.000276271 45.80461389 7.965432749

Table : CrOOD well parameters and Bethe ansatz roots for various assumed r0 with
2RD = 2.552Å.
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4. Proton Tunnelling in Chromous Acids

Applications to Chromous Acids

Remark 4.6 The Bethe ansatz roots are equally important in our
computation, as the energy spectrum is directly depending on the values of
the roots, thus in cases of multiple roots, effort has been made to carefully
select the roots which give consistent results with the experimental data.

As a check, we use the obtained values to compute the assignment ω03 and we
obtained:

For α = 0.4000615994Å−1, ω03 = 0.27592 eV (with roots z1 = 80.22028218,
z2 = 0.1691047166, z3 = 26.67422118),

For α = 0.5196790582Å−1, ω03 = 0.46710 eV (with roots
z1 = −0.1311967046, z2 = 104.7172731, z3 = 34.85447411).

Although these values are larger than the observed value of 0.23842 eV. For the
case α = 0.4000615994Å−1, the calculated value is consistent with the observed
value with about 14% error, which is likely due of the approximation in the
Lawrence and Robertson’s assignment of ω01.
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4. Proton Tunnelling in Chromous Acids

Transition Frequencies for CrOOH

ωij Ej − Ei (meV) z1 z2 z3
ω01 0.89996 —– —– —–

∼ 7cm−1 9.4627526 —– —–

ω12 0.31832688 9.4627526 —– —–
∼ 2567cm−1 63.964291 11.051377 —–

ω03 0.5539746 —– —– —–
∼ 4468cm−1 112.20949 37.355160 -0.1227278

ω23 0.2347502 63.964291 11.051377 —–
∼ 1893cm−1 112.20949 37.355160 -0.1227278

ω02 0.2669873 —– —– —–
∼ 2574cm−1 63.964291 11.051377 —–

ω13 0.5530771 9.4627526 —– —–
∼ 4460cm−1 112.20949 37.355160 -0.1227278

Table : CrOOH transition frequencies with the corresponding Bethe ansatz roots with
values r0 = 1.16Å , 2RH = 2.492Å, α = 0.4000615994Å−1 and D = 0.2430737783 meV.
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4. Proton Tunnelling in Chromous Acids

The CrOOH Spectral Well
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Figure : The O–H–O bond Well
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PART C
Summary & Conclusions
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5. Summary and Conclusion

Summary

We have discussed the concept of quasi-exactly solvable systems in quantum mechanics
and the classifications of QES operators have also been described.

Exact closed-form polynomial solutions to double Morse potential has been obtained in
terms of the roots of the algebraic Bethe ansatz equations.

The solutions obtained has been applied as a prototype description for the O–H–O bond in
chromous acids.

Conclusions

We compare our results with previous results of Snyder and Iber (1962) and Tomkinson et al

(1984)

LRHI LRCHL TTHEGexp Present

D (eV) 1.44 3.69 —– 0.000243
α (Å−1) 4.53 3.23 —– 0.40
r0 (Å) 0.958 0.948 1.16 1.16
ω01 (cm−1) 214 519 —– ∼7
ω12 (cm

−1) 1621 1542 ∼ 2050 ∼2567
ω12 (cm

−1) —– —– ∼2516 ∼2574
ω03 (cm−1) 3264 3833 —– ∼ 4468
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5. Summary and Conclusion

Conclusions

Despite the low values of parameter α and D , the transition frequencies obtained for the
O–H–O bond is in agreement with experimental observations.

Tomkinson et al (1984) experimentally observed a broad band of ∼ 2050cm−1 which they
assigned to the transition ω12 and the claimed that the band 1650cm−1 assigned by
Lawrence and Robertson (1980) is to low to give a consistent explanation of the CrOOH
spectrum. Our result also confirms the validity of thier claim with the assignment of
∼2567cm−1.

An overtone of ∼2516cm−1 was also observed by Tomkinson et al, this we confirm with
our calculation of ∼2574cm−1.

Unlike previous theoretical studies, one advantage of the present approach is that, using an
approximation 1/r2 ≈ α2/ sinh2(αr) for the centrifugal barrier , one can further
investigation of the effect of the angular momentum on the transition frequencies.

It would be interesting to generalize the results of the present work to studying the phase
transition of potassium dihydroden phosphate (KDP) based crystals and the inversion
spectrum in ammonia isotopomers. Research along this path is under way.

Moreover, by obtaining solutions to the system ω12 and ω03, it may be possible to improve
the calculated transition frequencies. Nonetheless, we hope that the findings in the present
Contribution will further elucidate the spectral properties of hydrogen bonded crystals.
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Thank You.
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