OPTIMAL ELECTRO-OSMOTIC FLOW THROUGH

NANOCHANNELS

Sleeba Varghese *,†

* Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

† "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark

NAVIER-STOKES EQUATION

NAVIER-STOKES EQUATION

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla P + \eta_0 \nabla^2 \mathbf{u} + \rho \mathbf{F},$$

- $\blacktriangleright \ \rho \implies \text{Density of fluid}$
- \blacktriangleright $\eta_0 \implies$ Shear viscosity of fluid
- \blacktriangleright *P* \implies Pressure of the fluid
- \blacktriangleright u \implies Streaming velocity field of the fluid flow
- \blacktriangleright F \implies External body force applied to generate the flow

NO-SLIP BOUNDARY CONDITION

NO-SLIP BOUNDARY CONDITION

▶ The fluid layer adjacent to the wall will have the same velocity as the wall.

NO-SLIP BOUNDARY CONDITION

▶ The fluid layer adjacent to the wall will have the same velocity as the wall.

SLIP BOUNDARY CONDITION

▶ In reality - Fluid slip does exist at the fluid-solid interface !

SLIP BOUNDARY CONDITION

- In reality Fluid slip does exist at the fluid-solid interface !
 - The effect due to the fluid-solid interfacial slip becomes significant especially when the channel width dimensions reduces to the nanometer scales.

SLIP BOUNDARY CONDITION

.....

- In reality Fluid slip does exist at the fluid-solid interface !
 - The effect due to the fluid-solid interfacial slip becomes significant especially when the channel width dimensions reduces to the nanometer scales.

noturo	Table 1 Pres	Table 1 Pressure-driven flow through aligned MWCNT membrane					
nature	Liquid	Initial permeability*	Observed flow velocity†	Expected flow velocity†	Slip length (mm)		
Explore content V About the journal V Publish with us V	Water	0.58	25	0.00057	54		
		1.01	43.9	0.00057	68		
nature > brief communications > article		0.72	9.5	0.00015	39		
	Ethanol	0.35	4.5	0.00014	28		
Published: 02 November 2005	iso-Propanol	0.088	1.12	0.00077	13		
Nanoscale hydrodynamics Enhanced flow in carbon nanotubes	Hexane	0.44	5.6	0.00052	9.5		
	Decane	0.053	0.67	0.00017	3.4		
	MWCNT, multi	MWCNT, multiwalled carbon nanotube. For details of methods, see supplementary					

Mainak Majumder, Nitin Chopra, Rodney Andrews & Bruce J. Hinds 🖂

MWCNT, multiwalled carbon nanotube. For details of methods, see supplementar information. *Units, cm³ per cm² min bar. †Flow velocities in cm s⁻¹ at 1 bar. Expected flow velocity is that predicted from conventional flow.

FLUID FRICTION

According Navier,

 $\blacktriangleright |\xi_0|$

 $\sigma_{xy} = -\xi_0 u_x(z)$

 $\blacktriangleright \ \sigma_{xy} \implies$ tangential stress exerted by the wall on the fluid,

•
$$u_x \implies$$
 velocity x-component

interfacial friction coefficient.

Figure: Bust of Claude Louis Marie Henri Navier at the École Nationale des Ponts et Chaussées (Image courtesy: *Wikipedia*)

FLUID FRICTION

According Navier,

 $\sigma_{xy} = -\xi_0 u_x(z)$

- \blacktriangleright σ_{xy} \implies tangential stress exerted by the wall on the fluid,
- $u_x \implies \text{velocity } x\text{-component}$

interfacial friction coefficient.

Figure: Bust of Claude Louis Marie Henri Navier at the École Nationale des Ponts et Chaussées (Image courtesy: *Wikipedia*)

 \blacktriangleright NS equation with slip boundary conditions valid up to channel widths pprox 1 nm !

Electro-osmotic flow (EOF) is an electrokinetic transport process that induces motion to an ionic solution in contact with a charged surface under the presence of an external electric field.

- Electro-osmotic flow (EOF) is an electrokinetic transport process that induces motion to an ionic solution in contact with a charged surface under the presence of an external electric field.
- The Navier-Stokes equation for analyzing EOF

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla P + \eta_0 \nabla^2 \mathbf{u} + \rho_f \mathbf{E},$$

 $\begin{array}{lll} \blacktriangleright & \rho_f \implies \mbox{Free charge density} \\ \blacktriangleright & \mathbf{E} \implies \mbox{External electric field applied to generate the flow} \end{array}$

The governing equation for a fully developed 1-D steady-state EOF, with negligible inertial effects compared to viscous forces

 $\lambda \propto \frac{1}{\text{ionic conc.}}$

 $\lambda \propto \frac{1}{\text{ionic conc.}}$

8/12

MOLECULAR DYNAMICS SIMULATIONS

MOLECULAR DYNAMICS SIMULATIONS

Optimizing electro-osmotic transport through nanochannels.

- Optimizing electro-osmotic transport through nanochannels.
 - Electro-osmotic pumping does not require any mechanical moving parts such as pumps or valves to transport the fluid.

- Optimizing electro-osmotic transport through nanochannels.
 - Electro-osmotic pumping does not require any mechanical moving parts such as pumps or valves to transport the fluid.
- Desalination

- Optimizing electro-osmotic transport through nanochannels.
 - Electro-osmotic pumping does not require any mechanical moving parts such as pumps or valves to transport the fluid.
- Desalination
- Energy storage

- Optimizing electro-osmotic transport through nanochannels.
 - Electro-osmotic pumping does not require any mechanical moving parts such as pumps or valves to transport the fluid.
- Desalination
- Energy storage
- Understanding flow through biological nanochannels

ACKNOWLEDGEMENTS

Prof. Billy Todd Swinburne University of Technology Australia Prof. Jesper Schmidt Hansen Roskilde University Denmark

ACKNOWLEDGEMENTS

Prof. Billy Todd Swinburne University of Technology Australia Prof. Jesper Schmidt Hansen Roskilde University Denmark

Swinburne University Supercomputer Centre for providing computational resources for this work

Optimal Electro-osmotic Flow Through Nanochannels

Thank you!

email: svarghese@swin.edu.au