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NAVIER-STOKES EQUATION

∇ · u = 0

ρ

(
∂u
∂t + (u · ∇)u

)
= −∇P + η0∇2u + ρF,

I ρ =⇒ Density of fluid
I η0 =⇒ Shear viscosity of fluid
I P =⇒ Pressure of the fluid
I u =⇒ Streaming velocity field of the fluid flow
I F =⇒ External body force applied to generate the flow
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NO-SLIP BOUNDARY CONDITION

I The fluid layer adjacent to the wall will have the same velocity as the wall.
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SLIP BOUNDARY CONDITION

I In reality - Fluid slip does exist at the fluid-solid interface !

I The effect due to the fluid-solid interfacial slip becomes significant especially when
the channel width dimensions reduces to the nanometer scales.
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FLUID FRICTION

I According Navier,

σxy = −ξ0ux (z)

I σxy =⇒ tangential stress exerted by the wall
on the fluid,

I ux =⇒ velocity x -component
I ξ0 =⇒ interfacial friction coefficient.

Figure: Bust of Claude Louis Marie Henri Navier at the École
Nationale des Ponts et Chaussées (Image courtesy: Wikipedia)

I NS equation with slip boundary conditions valid up to channel widths ≈ 1 nm !
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ELECTRO-OSMOTIC FLOW

I Electro-osmotic flow (EOF) is an electrokinetic transport process that induces
motion to an ionic solution in contact with a charged surface under the presence
of an external electric field.

I The Navier-Stokes equation for analyzing EOF

ρ

(
∂u
∂t + (u · ∇)u

)
= −∇P + η0∇2u + ρf E,

I ρf =⇒ Free charge density
I E =⇒ External electric field applied to generate the flow
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ELECTRO-OSMOTIC FLOW

I The governing equation for a fully
developed 1-D steady-state EOF, with
negligible inertial effects compared to
viscous forces

=⇒ η0
d2ux (z)

dz2 = −ρf (z)Ex

Ex

z 

x 
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WETTING (HYDROPHILIC) NANOCHANNEL
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NON-WETTING (HYDROPHOBIC) NANOCHANNEL
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MOLECULAR DYNAMICS SIMULATIONS
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APPLICATIONS

I Optimizing electro-osmotic transport through nanochannels.
I Electro-osmotic pumping does not require any mechanical moving parts such as

pumps or valves to transport the fluid.
I Desalination
I Energy storage
I Understanding flow through biological nanochannels
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Optimal Electro-osmotic Flow Through Nanochannels

Thank you!
email: svarghese@swin.edu.au


