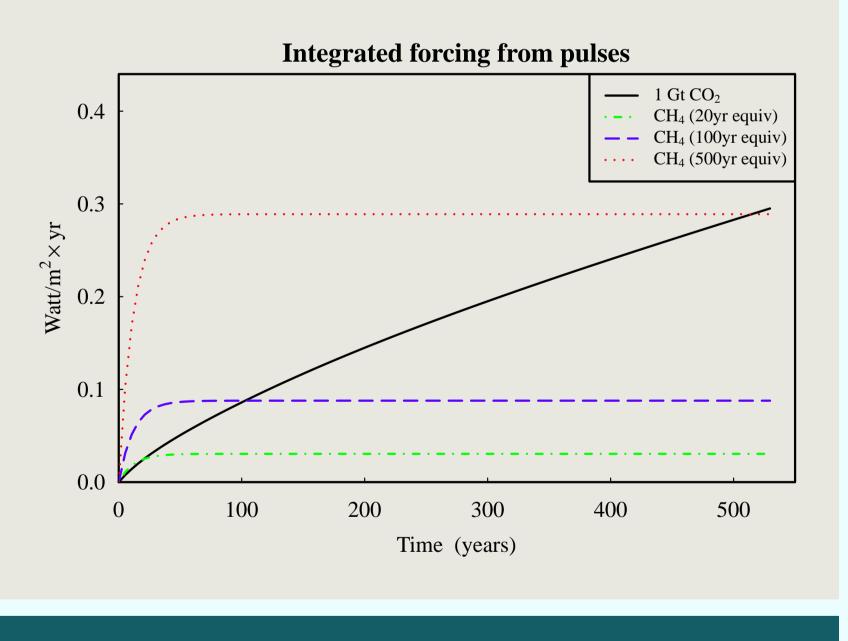
Summary

- Propose methane offset approach to avoid widely recognised difficulties with Global Warming Potential (GWP).
- Offset on-going emissions of 0.9 to 1.05 kg of methane per year and one-off emissions of 1 tonne of carbon.
- Close equivalence in terms of resultant radiative forcing for time scales from decades to centuries.

GWP and methane

- Equivalence between greenhouse gases is usually expressed in terms of radiative forcing, often referenced to CO_2 .
- Concentration-equivalence is defined in terms of instantaneous radiative forcing
- Emission-equivalence is defined in terms of time-integrated radiative forcing:
- A choice of 'time-horizon' for integral is required; Ratios relative to CO₂ define Global Warming Potentials (GWPs);
- GWPs define 'Emission-equivalence' in the Kyoto Protocol.

The 'perturbation lifetime' for methane in the atmosphere is approximately 12 years, whereas CO_2 has an unbounded lifetime. The consequence of this is starkly illustrated in the figure to the right: equivalence in time-integrated radiative forcing between pulse emissions of CO₂ and methane at one time-scale results in large discrepancies at other time-scales. For example, the integrated radiative forcing due to a GWP-100 equivalent emission of methane is much higher than that of CO_2 for times of less than 100 years, and is equally bad in the opposite direction for longer times.


Other approaches

- Analysis of stabilisation of radiative forcing in terms of capping cumulative CO_2 emissions [1, 3].
- Broader analysis in terms of caps on cumulative emissions of CO_2 and N_2O_2 , and caps on ongoing emissions of methane in the context of stabilisation [5].
- Enting et al. (report for Garnaut review of climate change, 2008) proposed the use of 500-year GWPs as a compromise between 100 years (planning horizon) and the infinite time scale of stabilisation.

- (FEI).
- systems.
- Control.

Many studies have criticised the use of GWPs as an 'emission-equivalence' metric due to this lack of robustness over a range of time-scales.

- e.g. large differences in outcomes of $^{\circ}CO_2$ -equivalent' scenarios [4].
- This sort of problem is a generic issue for metrics which attempt to define equivalent pulse emissions of CO_2 and methane. • In particular, 'emission-equivalance' is not appropriate for stabilisation of radiative forcing: CO_2 requires a cap on cumulative emissions while methane requires a cap
- on the rate of on-going emissions [5].

Wigley [6]

- The FEI is defined via the following inverse problem: Given a pulse emission of gas A, what time profile of emissions of gas B would result in the same forcing? (at all times)
- The FEI of the CO₂—methane case is closely examined in Manning and Reisinger [2].

Offsetting Ongoing Methane Emissions — An Alternative to Emission Metrics A. Lauder¹, I. G. Enting², J. O. Carter³, N. Clisby², A. L. Cowie⁴, B. K. Henry⁵, M. R. Raupach⁶ (presenter)

¹Carbon Grazing, Queensland, ²MASCOS, The University of Melbourne (corresponding author: ian.g.enting@gmail.com), ³Department of Science, Information Technology, Innovation and the Arts, Queensland, ⁴Rural Climate Solutions, University of New England/NSW Department of Primary Industries, ⁵IFE, Queensland University of Technology, ⁶CSIRO Marine and Atmospheric Research, ACT.

• Our approach represents an approximate solution to the Forcing Equivalence Index

 Proposed approach may provide an attractive mechanism for offsetting methane emissions from rangeland

• Accepted for publication in *The* International Journal of Greenhouse Gas

The most important antecedent is the 'Forcing Equivalent Index' (FEI) noted by

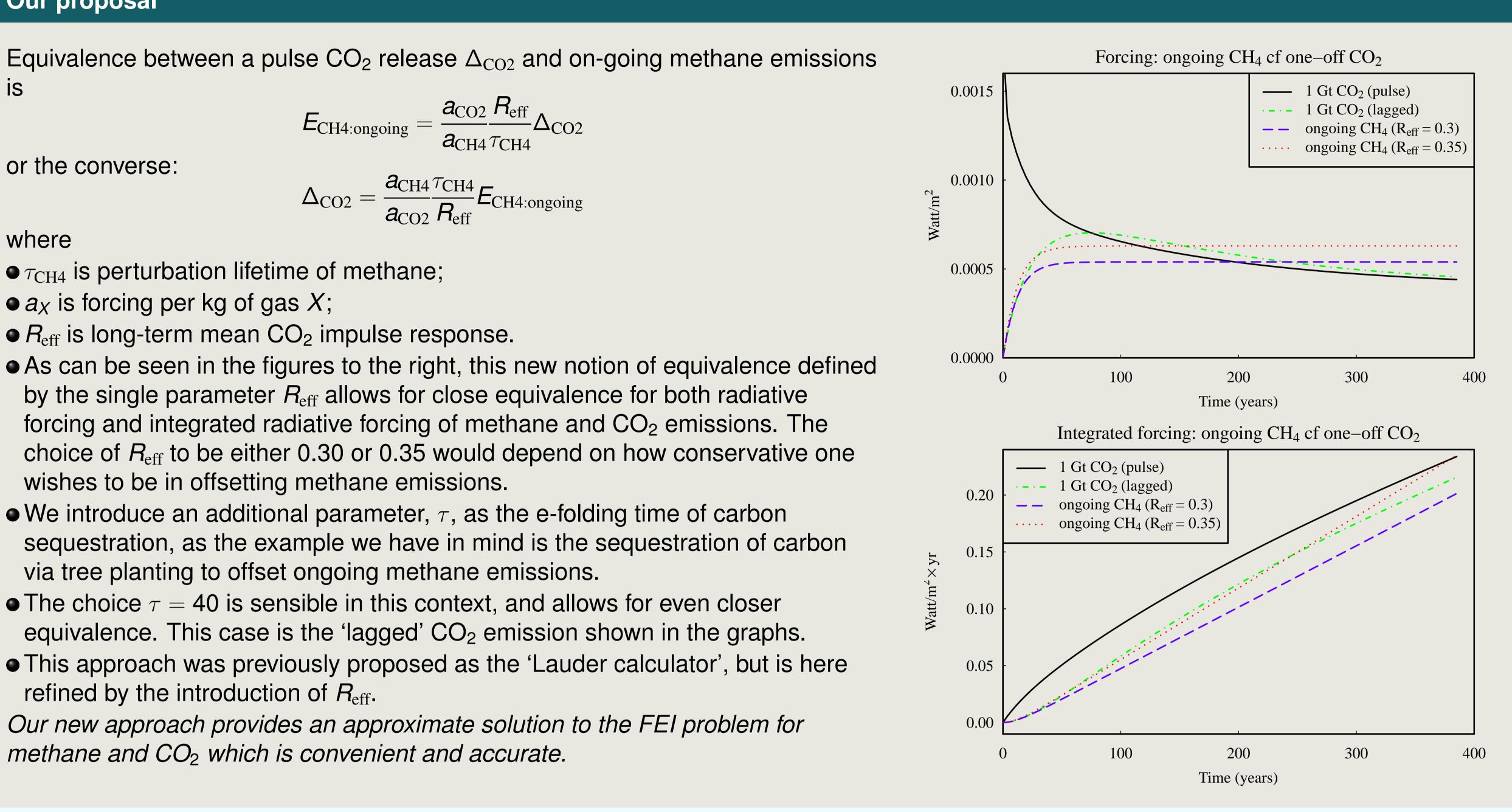
Our proposal

İS

or the converse:

where

- τ_{CH4} is perturbation lifetime of methane;
- a_X is forcing per kg of gas X;
- $R_{\rm eff}$ is long-term mean CO₂ impulse response.
- wishes to be in offsetting methane emissions.
- via tree planting to offset ongoing methane emissions.
- refined by the introduction of $R_{\rm eff}$. methane and CO_2 which is convenient and accurate.


Rangeland systems

Key idea: offset ongoing methane emissions of rangeland cattle by sequestering carbon through tree planting. Why is this desirable?

- management changes.
- biochemistry.
- Thus, offsets are more practical than abatement.
- Applying offsets within a single agricultural unit increases transparency.
- Applicability of this approach depends on contexts:
- Agents (farmers through to nations) seeking to be climate-neutral.
- Agents acting within a GWP-based regulatory system. • Global community seeking to mitigate human influence on climate. Details for typical rangeland:
- 10 hectares/animal (10 animals per km^2).

Acknowledgements

The Australian Research Council funded the Centre of Excellence for Mathematics and Statistics (MASCOS). Ian Enting's fellowship at MASCOS was supported by CSIRO through a sponsorship agreement. Meat and Livestock Australia has funded some of the interaction between the collaborators in this project.

• Very sparse grazing, low quality feed – little management of herd and little scope for

• Methane is how ruminants get rid of hydrogen – little scope for major change in

• 5.5kg methane per hectare per year must be offset by 6.1 tonnes carbon storage. $\bullet \Rightarrow$ Offsetting ongoing methane emissions requires (re-)planting 20% of grazing area.

References

[1] M. R. Allen et al. *Nature*, 458:1163–1166, 2009. [2] M. Manning and A. Reisinger. *Phil. Trans. R. Soc. A*, 369:1891–1905, 2011. [3] H. D. Matthews and K. Caldeira. *Geophys. Res. Lett.*, 35:L04705, 2008. [4] J. Reilly et al. *Nature*, 401:549–555, 1999. [5] S. M. Smith et al. *Nature Clim. Change*, 2:535–538, 2012. [6] T. M. L. Wigley. *Geophys. Res. Lett.*, 25:2285–2288, 1998.

Rangeland habitats at Swan's Lagoon, near Townsville, Qld, Australia. Images due to Meat and Livestock Australia.