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Introduction

The self-avoiding walk model

A self-avoiding walk (SAW) is a path on a lattice, which
starts at the origin and hops successively to neighbouring
lattice sites without intersecting itself.

We count the number of SAWs of length n, cn, and in
particular study the critical behaviour of the generating
function

C(x) =

∞
∑

n=0

cnxn

For the simple cubic lattice c0 = 1, c1 = 6, c2 = 30,
c3 = 150, c4 = 726, c5 = 3534, . . .
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Introduction

Known results

For the square lattice cn has been enumerated to very high
order via the finite lattice method by Iwan Jensen

c71 = 4190893020903935054619120005916

Best results for d > 2 are via direct enumeration.

MacDonald et al, simple cubic lattice

c26 = 549493796867100942
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Introduction

Known results

Chen and Lin (2003), hypercubic lattice, d = 4

c19 = 8639846411760440

Chen and Lin (2003), hypercubic lattice, d = 5

c15 = 192003889675210

Chen and Lin (2003), hypercubic lattice, d = 6

c14 = 373292253262692
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Introduction

Known results

It is universally believed (but not proven) that for
dimensions d < 4 that

cn = A nγ−1µn [1 + corrections]

Improved enumerations allow better estimation
of A, µ and γ.

Trivial upper bound from forbidding immediate return, lower
bound from walks with steps only in positive directions:

dn ≤ cn ≤ 2d(2d − 1)n−1

⇒ d ≤ µ ≤ 2d − 1
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Introduction

Known results, d = 2, 3

Square lattice µ = 2.6381 · · · , γ = 1.34375 = 43/32 (exact
value from association with SLE8/3).

Cubic lattice, no exact results available, µ = 4.68404(9),
γ = 1.1575(6).
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Introduction

Known results

For d = 4 there is believed to be a logarithmic factor

cn = A (log n)1/4µn [1 + corrections]

For d > 4 it has been rigorously shown that γ = 1, and that

cn = A µn [1 + corrections]
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Introduction

Known results

1/d expansion for the connective constant

µ = 2d − 1 − 1
2d

− 3
(2d)2 − 16

(2d)3 − 102
(2d)4 + · · ·
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The two-step method

The two-step method

Wish to reduce the time taken by reducing the complexity.

Finite lattice method with pruning for SAPs on the square
lattice, µ = 2.638 · · · but complexity is about 1.2!

Idea is to take two-steps at once, and represent walks
which have the same endpoint by a single configuration.

We refer to the sequence of endpoints as a two-step walk,
Ω.

Will now show an example of how to generate a two-step
walk.
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The two-step method

Two step method for SAWs
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The two-step method

Two step method for SAWs
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The two-step method

The two-step method

We define:
CΩ as the set of connected components with one cycle.
TΩ as the set of trees.
If there is a component with more than 1 loop/cycle, the
indicator function IΩ = 0, otherwise it is 1.

The weight of a two-step walk Ω is then given by

W (Ω) = IΩ2|CΩ|
∏

T∈TΩ

NT

Weight can be calculated in linear time in the size of the
allocation graph.
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The two-step method

The two-step method, proof by example

The weight of a two-step walk is the number of admissible
orientations of it’s allocation graph.

We assign directions to each edge in the graph, and an
admissible orientation has in-degree at most one for each
vertex.

This rule guarantees that no site is visited more than once.
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The two-step method

Two step method for SAWs
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The two-step method

Two step method for SAWs
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The two-step method
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The two-step method
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The two-step method
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The two-step method
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The two-step method

Two step method for SAWs
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The two-step method

The two-step method

We can calculate an upper bound for the complexity in the
same way as the trivial upper bound for the connective
constant, where immediate returns are forbidden.

If S is the number of sites reachable by a self-avoiding
walk in two-steps, the total number of configurations
generated by taking l two-steps has an upper bound of

S(S − 1)l−1 = S(S − 1)(n−2)/2

where n = 2l is the number of individual steps.

Therefore λ ≤
√

S − 1.
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The two-step method

The two-step method

S = 8 for d = 2, and therefore the complexity has an upper
bound of

λ ≤
√

7 = 2.645 · · ·

The self-avoidance constraint reduces λ to a value of order
2.4 for d = 2.

S = 18 for d = 3, and therefore the complexity has an
upper bound of

λ ≤
√

17 = 4.123 · · · < µ

The self-avoidance constraint reduces λ to something of
order 4.0 for d = 3.
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The lace expansion

The lace expansion

The lace expansion, originally due to Brydges and
Spencer, is a method that has been used to study the
critical behavior of SAWs, lattice trees and animals,
percolation and related models, above their critical
dimension.

The number of SAWs of length n may be obtained from the
following recursion relation,

cn = 2dcn−1 +
n

∑

m=2

πmcn−m

where πm is the sum over all connected graphs of length m
with weights ±1 depending on the number of
self-intersections.
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The lace expansion

The lace expansion

The lace expansion is a resummation of this connected
graph expansion, and allows us to express πm in terms of
the number of lace graphs of length m with N loops:

πm =
∑

N

(−1)Nπ
(N)
m

Lace graphs are less numerous, and therefore easier to
count!

The first of these graphs are paths that avoid themselves
until they return to the origin, i.e. graphs which form a
single loop. Then there are graphs with 2, 3, 4, . . . loops,
which are represented by the following diagrams.
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The lace expansion

π(1)

a, b

Start at the origin, must return to
the origin.

Avoidance pattern
[1]
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The lace expansion

π(2)

a, t1 s2, b

Start at the origin, return to the
origin, continue until the first loop
is intersected.

Avoidance pattern
[1, 2, 3]
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The lace expansion

π(3)

s2, t2

a, t1 s3, b

Avoidance pattern
[1, 2, 3, 4], [3, 4, 5]
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The lace expansion

π(4)

s2, t2

a, t1 s3, t3

s4, b
Avoidance pattern
[1, 2, 3, 4], [3, 4, 5, 6], [5, 6, 7]
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The lace expansion

Backtracking

Will now demonstrate how to use a backtracking algorithm
to count lace graphs.

Surprisingly simple recursive procedure.
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The lace expansion

Generating lace expansion graphs
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The lace expansion
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The lace expansion

Generating lace expansion graphs

�
�
�
�

�
�
�
�

Start at the origin, must
return to the origin.

N = 0

m = 2



Enumeration of self-avoiding walks via the lace expansion

The lace expansion
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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Start at the origin, must
return to the origin.

N = 0

m = 5
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The lace expansion

Generating lace expansion graphs
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Loop formed!

Increment π
(1)
6 .

N = 0 + 1 = 1

m = 6
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The lace expansion

Generating lace expansion graphs
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Step forward until previous
sub-walk is encountered.

N = 1

m = 6
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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Step forward until previous
sub-walk is encountered.

N = 1

m = 8
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The lace expansion

Generating lace expansion graphs
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� Step forward until previous

sub-walk is encountered.

N = 1

m = 9
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The lace expansion

Generating lace expansion graphs
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sub-walk is encountered.

N = 1

m = 10
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The lace expansion

Generating lace expansion graphs

�
�
�
�

�
�
�
�

Step forward until previous
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N = 1

m = 11
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The lace expansion

Generating lace expansion graphs
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Loop formed!

Increment π
(2)
12 .

N = 1 + 1 = 2

m = 12
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs

�
�
�
�

�
�
�
�

Step forward until previous
sub-walk is encountered.

N = 2

m = 12



Enumeration of self-avoiding walks via the lace expansion

The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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Loop formed!

Increment π
(3)
18 .

N = 2 + 1 = 3

m = 18
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The lace expansion

Generating lace expansion graphs

�
�
�
�

�
�
�
� Forget about the previous

sub-walk.

N = 3

m = 18
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The lace expansion

Generating lace expansion graphs
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The lace expansion

Generating lace expansion graphs
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Step forward until previous
sub-walk is encountered.

N = 3

m = 19

etc.
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The lace expansion

Backtracking details

Similar to SAW backtracking, but with additional overhead.

Choice of data structure is very important in order to do
this efficiently.
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The lace expansion

Why are there fewer lace graphs?

Lace graphs can be thought of as generalised polygons,
there are less of them because they are less spatially
extended than SAWs.

But only by a polynomial factor! Algorithmic complexity is
unchanged, and is still given by the connective constant µ.
i.e. for any N

π
(N)
m ∼ µm

For d = 3, n = 30,

c30 ≈ 525π30
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Results

Enumeration results

Simple cubic lattice

c30 = 270569905525454674614

c26 = 549493796867100942

c30/c26 = 492.3 · · ·

Hypercubic lattice, d = 4

c24 = 124852857467211187784

c19 = 8639846411760440

c24/c19 = 14450.8 · · ·
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Results

Enumeration results

Hypercubic lattice, d = 5

c24 = 63742525570299581210090

c15 = 192003889675210

c24/c15 = 3.3 × 108

Hypercubic lattice, d = 6

c24 = 8689265092167904101731532

c14 = 373292253262692

c24/c14 = 2.3 × 1010

Our enumerations for n = 24 allow us to calculate c24 for
any dimension.
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Results

Enumeration results

Mean square end-to-end distance series calculated to the
same order.

SAPs enumerated to the same order, except for p32 for
d = 3 and p26 for d = 4.

For d = 3 used around 15000 CPU hours on VPAC
(probably comparable to time used by MacDonald et al.)

For d > 3 used around 5000 CPU hours on VPAC.
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Results

1/d expansion for µ

1/d expansion for the connective constant, with error
estimate,

µ = 2d − 1 − 1
2d

− 3
(2d)2 − 16

(2d)3 − 102
(2d)4

− 729
(2d)5 − 5533

(2d)6 − 42229
(2d)7 − 288761

(2d)8

−1026328
(2d)9 +

21070667
(2d)10 +

780280468
(2d)11 + O

(

1
(2d)12

)

Last two terms in the series are positive.
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Discussion

Analysing the series

At this stage, expect to slightly improve estimates for γ and
µ for d = 3.

Will improve upon existing series results for d ≥ 4,
estimates of µ will be competitive with those obtained via
the PERM algorithm by Owczarek and Prellberg.
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Discussion

The k -step method?

Is it possible to extend the two-step method to k-step?

Potentially much faster, because improvement comes from
µk walks being replaced by O(kd ) k-step walks
(d ≡ dimension), one for each reachable end site.

Can map the problem of updating weight factor when
overlaps between different subwalks occur to the
enumeration of maximum independent sets in a graph.

The maximum independent set problem for general graphs
is NP-complete, and it appears that this is likely to be the
case for the graphs produced by the k-step method with
k > 2.
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Discussion

Other applications

Monte-Carlo (two-step).

SAWs on other lattices (two-step and lace expansion).

Polymers near a boundary (two-step).

Self-avoiding trails (two-step).

Enumeration versions of the travelling salesman and
hamiltonian path problems (two-step).
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