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The Hard Sphere System

• The hard sphere system is an idealized classical,

continuum model of spherical particles interacting

via excluded volume only

• Two body potential for hard spheres with diameter

σ is

U(r) =


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+∞

0

|r| < σ

|r| > σ
(1)

• Particles may have any dimensionality, but the hard

sphere system has been most commonly studied for

the cases of hard rods (D = 1), hard discs (D = 2),

and hard spheres (D = 3)



Phase Transition

• Hard spheres have a fluid-solid phase transition, as

first shown by Alder and Wainright [1] in 1957

• First order transition for D = 3, 4, 5

• Either first or second order for discs

• Potential has no attractive component, and hence no

first order condensation transition. Different to usual

freezing?

• Phase transition entirely driven by entropy - all

allowed configurations have zero potential energy

• Appropriate to describe the behaviour of real

systems for high P, T, e.g. noble gases

• Hard spheres are “soft matter”, like colloidal

suspensions, as the solid phase does not support

shear forces



Virial Expansion

• Virial series for the pressure of hard spheres

describes the low density, fluid phase

P

kBT
= ρ +

∞
∑

k=2

Bkρk (2)

• For D = 2, 3 all known coefficients are positive, and

radius of convergence appears to be greater than the

density of the phase transition

• Many proposed equations of state, with leading

singularity invariably on the real positive density

axis, usually at “random close packing”, close

packing, or space filling density. Some have the

leading singularity at the freezing density

• Either the virial expansion breaks down as a

description for hard spheres within its radius of

convergence or the low order terms do not represent

the true asymptotic behaviour of the series

• Can the virial expansion provide information about

the phase transition?

• What is the asymptotic behaviour of the virial

series?



• Gaunt and Joyce [2] caution that low order

behaviour can be very different from the asymptotic

behaviour, e.g. for hard hexagons



Mayer formalism

• Mayer and Mayer [3] derived a diagrammatic

expansion for Bk in terms of k-point biconnected

graphs

• Derivation of cluster expansion in the grand

canonical ensemble:

P

kBT
=

∞
∑

k=1

bkzk (3)

ρ = z
d

dz
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• Low order virial coefficients are:
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• A given point set configuration may contribute to

many different diagrams

• Cancellation between positive and negative diagrams

means that the final virial coefficient is small

compared to each individual diagram

• Massive cancellation ⇒ poor numerical results



Ree-Hoover reformulation

• Ree and Hoover [4] reformulated the virial series by

substituting 1 = f̃ − f in each Mayer graph and

expanding



• Star content [4] given as the number of biconnected

subgraphs with even number of edges subtract the

number of biconnected subgraphs with odd edges



Analytical calculation of B4

in even dimensions

• B4 for hard spheres (D = 3) calculated by

van der Waals, van Laar, and Boltzmann in 19th

Century. Confirmed by Nijboer and van Hove in

1953

• B4 for discs calculated independently in 1964 by

Rowlinson, and by Hemmer

• Extended calculation to even dimensions

D = 4, 6, 8, 10, 12 using Maple

• Ivar Lyberg has recently calculated B4 for odd

dimensions using a different method

• Will be very difficult to extend analytic calculations

to B5 and higher



• Exact results for B2, B3, and B4. Results for B4,

D = 4, 6, 8, 10, 12 are due to Clisby and McCoy [5]
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High dimensional virial coefficients

• Transformed integration coordinates in order to

calculate Bk with k = 4, 5, 6 for k − 1 ≤ D ≤ 50

• Showed that B6 is negative for D ≥ 6

• Ree-Hoover ring diagram dominates in the limit of

large dimension: even virial coefficients are negative,

odd coefficients positive

High order diagrams

• For D = 2, the largest diagram up to high order

seems to be complete star diagram

• But, ring will become larger than complete star for

sufficiently high order, even for D = 2 (at about

k = 22 for D = 2)

• Low order coefficients, with anomalously large

contribution from positive complete star diagrams,

are well away from asymptotic behaviour

• These results from Clisby and McCoy [6]



Virial coefficients B9 and B10

• Key problem: calculate the star content of graphs

either before the Monte-Carlo integration procedure,

or quickly as graphs are generated

• Up to 2k(k−1)/2 labeled subgraphs - hard problem!

• Calculate star content for all biconnected graphs,

using fact that the number of subgraphs of G can be

obtained from the subgraphs of G with one edge less

• Extensively used the program “nauty” (no

automorphisms yes?) due to McKay [7] for

canonically labeling graphs. Necessary for

Monte-Carlo calculation as well as star content

• Problem: number of graphs grows extremely rapidly,

and hence this method will become very difficult for

k > 11



• Used standard hit or miss Monte-Carlo integration

procedure

• Generate graph randomly, if it can be identified as a

biconnected graph with non-zero star content then

increment the number of hits for that graph. Repeat

until enough configurations have been generated (up

to 1.5 × 1012 for B10 with D = 3)

• Require a set of spanning trees that can generate all

of the biconnected graphs with non-zero star content



Results

• Systematic Monte-Carlo calculation for Bk,

k = 5, . . . , 10, in dimensions D = 2, . . . , 8

• B9 and B10 new, likewise B7 for D ≥ 6 and B8 for

D ≥ 5

• Find negative coefficients for D ≥ 5

• We analyse virial coefficient behaviour using ratio

analysis, plot Bk

Bk−1ρcp
versus 1

k .

• Fit series using differential approximants



Geometrically zero diagrams

• In general the number of biconnected graphs grows

asymptotically as

N(k) ∼
2k(k−1)/2

k!
(6)

• For D = 1 only one diagram contributes

• Many diagrams with non-zero star content do not

contribute for D = 2

• Expect that for k >> D most diagrams will not

contribute (due to forbidden subgraphs)

• Question: how does the number of contributing

diagrams grow asymptotically for fixed D?



Asymptotic behaviour of the virial series

• D ≥ 5: the radius of convergence limited by

singularity below freezing density. Singularity is not

on the positive real axis

• D = 4: very likely the same scenario

• D = 3: see non-convex behaviour. Suggestive that

singularity is not on the real axis. Naively

extrapolating ratio plot gives singularity at η ≃ 0.93

• D = 2: completely smooth. Singularity which

determines radius of convergence at η = 1.



Summary

• Negative coefficients for D ≥ 5

• There will be negative coefficients for D = 4, and

likely also for D = 3

• More coefficients (B11, B12) could confirm this result

for D = 3

• Unlikely to be able to find out anything about phase

transition without a dramatically different approach



Open Questions

• What is the asymptotic behaviour of the virial series

for D = 2?

• Can we obtain enough coefficients with sufficient

accuracy to determine the leading singularities for

D = 3, 4, 5, · · ·?

• Can we find a fast algorithm for calculating the star

content of a randomly generated graph?

• How many graphs contribute to Bk for fixed D as

k → ∞?



• Packing fraction of the phase transition compared to

the estimated radius of convergence, the lower

bounds on the radius of convergence of Lebowitz and

Penrose [8], and the packing fraction of the densest

lattice packing

D ηf ηs ηR ηLP ηcp

1 – – 1 0.07238 1

2 ∼ 0.71 ∼ 0.71 ∼ 1 0.03619 0.90689 · · ·

3 0.49 0.56 ∼ 0.93 0.01810 0.74048 · · ·

4 0.31 0.42 · · · 0.00905 0.61685 · · ·

5 0.19 0.29 ∼ 0.116 0.00452 0.46525 · · ·

6 · · · · · · ∼ 0.055 0.00226 0.37294 · · ·

7 · · · · · · ∼ 0.035 0.00113 0.29529 · · ·

8 · · · · · · ∼ 0.025 0.00057 0.25366 · · ·
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Table 1: Number of batches of 107 configurations used in
virial coefficient calculations, as a function of order and

dimension

D B4/B3

2
B5/B4

2
B6/B5

2
B7/B6

2
B8/B7

2
B9/B8

2
B10/B9

2

2 1000 9625 9000 9000 15384 19553 6149

3 1000 52573 53463 63751 64675 87609 151349

4 1000 8454 9400 10299 21400 31903 38699

5 23199 8436 8618 8597 15607 21042 15398

6 1000 8423 8600 8542 5899 6300 1229

7 23010 8213 8600 8500 5898 6300 1300

8 1000 8209 8500 8493 5763 6265 1300



Table 2: Number of Mayer and Ree-Hoover diagrams

Order
4 5 6 7 8 9 10

Mayer 3 10 56 468 7123 194066 9743542
RH 2 5 23 171 2606 81564 4980756
RH/Mayer 0.667 0.500 0.410 0.365 0.366 0.420 0.511
RH, D = 1 1 1 1 1 1 1 1
RH, D = 2 2 4 15 73 647 8417 110529
RH, D = 3 2 5 22 161 >2334 >60902
RH, D = 4 2 5 23 169 >2556 >76318


