SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

There are 7 x 1020018276 se|f_ayoiding walks of
38 797 311 steps on Z3

Nathan Clisby
MASCQOS, The University of Melbourne

AustMS Annual Meeting
The University of Ballarat
September 25, 2012

Counting SAW

1/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

@ Self-avoiding walks

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

@ Self-avoiding walks

@ Enumeration

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

@ Self-avoiding walks
@ Enumeration

@ Direct sampling and weighted sampling (PERM)

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

@ Self-avoiding walks

@ Enumeration

@ Direct sampling and weighted sampling (PERM)
@ Ingredients for efficiently estimating cy

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

Self-avoiding walks

°
@ Enumeration

@ Direct sampling and weighted sampling (PERM)
°

Ingredients for efficiently estimating cy
m Global move (pivot)

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

Self-avoiding walks
Enumeration
Direct sampling and weighted sampling (PERM)

Ingredients for efficiently estimating cy

m Global move (pivot)
m Efficient data structure (SAW-tree)

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

Self-avoiding walks
Enumeration
Direct sampling and weighted sampling (PERM)

Ingredients for efficiently estimating cy

m Global move (pivot)
m Efficient data structure (SAW-tree)
m Clever choice of observable

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

Self-avoiding walks
Enumeration
Direct sampling and weighted sampling (PERM)

Ingredients for efficiently estimating cy

m Global move (pivot)

m Efficient data structure (SAW-tree)
m Clever choice of observable

m Minimizing statistical error

Counting SAW

2/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Outline

Self-avoiding walks
Enumeration
Direct sampling and weighted sampling (PERM)

Ingredients for efficiently estimating cy

m Global move (pivot)

m Efficient data structure (SAW-tree)
m Clever choice of observable

m Minimizing statistical error

@ Results and conclusion

Counting SAW

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Self-avoiding walk model

o A walk on a lattice, step to neighbouring site provided it has
not already been visited.

Counting SAW

3/30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Self-avoiding walk model

o A walk on a lattice, step to neighbouring site provided it has
not already been visited.

@ Models polymers in good solvent limit.

Counting SAW

3/30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Self-avoiding walk model

o A walk on a lattice, step to neighbouring site provided it has
not already been visited.

@ Models polymers in good solvent limit.

@ Exactly captures universal properties such as critical
exponents.

Counting SAW

3/30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Self-avoiding walk model

@ A walk on a lattice, step to neighbouring site provided it has
not already been visited.

@ Models polymers in good solvent limit.
@ Exactly captures universal properties such as critical
exponents.

@ N-step SAW on Z9 is a mapping w : {0,1,..., N} — Z9 with
|w(i+ 1) — w(i)] =1 for each i (|x| denotes the Euclidean
norm of x), and with w(i) # w(j) for all i # j.

Counting SAW

3/30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Self-avoiding walk model

A walk on a lattice, step to neighbouring site provided it has

not already been visited.

@ Models polymers in good solvent limit.

@ Exactly captures universal properties such as critical
exponents.

@ N-step SAW on Z9 is a mapping w : {0,1,..., N} — Z9 with

lw(i 4+ 1) —w(i)] =1 for each i (|x| denotes the Euclidean

norm of x), and with w(i) # w(j) for all i # j.

@ For uniqueness, choose w(0) = 0.

Counting SAW

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

SAW Not a SAW

Counting SAW

4 /30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

Counting SAW

5/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

e For 72, cy = 1,4,12,36,100, 284, 780, 2172, - - -

Counting SAW

5/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

e For Z?, ¢y =1,4,12, 36,100,284, 780,2172, - - -
e For Z3, cy = 1,6,30,150,726, 3534, - - -

Counting SAW

5/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

e For Z?, ¢y =1,4,12, 36,100,284, 780,2172, - - -
e For Z3, cy = 1,6,30,150,726, 3534, - - -

@ 7 is a universal exponent.

Counting SAW

5/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

For Z2, cy = 1,4,12,36,100,284,780,2172, - - -
For Z3, ey = 1, 6,30, 150, 726,3534, - - -
v is a universal exponent.

1 is the connective constant; lattice dependent.

Counting SAW

5/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

@ The number of SAW of length N, cp, tells us about how many
conformations are available to SAW of a particular length:

ey ~ A N1V [T+ corrections]

For Z2, cy = 1,4,12,36,100,284,780,2172, - - -
For Z3, ey = 1, 6,30, 150, 726,3534, - - -

v is a universal exponent.

1 is the connective constant; lattice dependent.
(Also interested in the mean size of a SAW)

Counting SAW

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Long history, has been studied by physicists and
mathematicians for 60 years.

Counting SAW

6/ 30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Long history, has been studied by physicists and
mathematicians for 60 years.

@ Rich and active research area (more than 1800 articles in Web
of Science with SAW in title / abstract).

Counting SAW

6 /30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Long history, has been studied by physicists and
mathematicians for 60 years.

@ Rich and active research area (more than 1800 articles in Web
of Science with SAW in title / abstract).

@ Hard! No immediate prospect of exact solution, although
recent progress with exact results for d = 2.

Counting SAW

6 /30

Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Long history, has been studied by physicists and
mathematicians for 60 years.

@ Rich and active research area (more than 1800 articles in Web
of Science with SAW in title / abstract).

@ Hard! No immediate prospect of exact solution, although
recent progress with exact results for d = 2.

@ Has driven development of advanced algorithms for
enumeration and Monte Carlo simulation.

Counting SAW

SAW PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ /¥ with pu ~ 2.64
for Z2 and p ~ 4.68 for Z3.

Counting SAW

7/ 30

SAW PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ uN with p ~ 2.64
for Z? and u ~ 4.68 for Z3.

@ So, transform problem and count something else.

Counting SAW

7/ 30

SAW

PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ uN with p ~ 2.64
for Z? and u ~ 4.68 for Z3.

@ So, transform problem and count something else.

@ For 2d lattices: finite lattice method extremely powerful.
Count boundary states instead of walks, O(1.3")

(unfortunately, still exponential). Recently, lwan Jensen found
c79 = 10194710293557466193787900071923676 for Z2!

Counting SAW

7 /30

SAW

PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ uN with p ~ 2.64
for Z? and u ~ 4.68 for Z3.

@ So, transform problem and count something else.

@ For 2d lattices: finite lattice method extremely powerful.
Count boundary states instead of walks, O(1.3")

(unfortunately, still exponential). Recently, lwan Jensen found
cr9 = 10194710293557466193787900071923676 for Z2!

@ For 3d lattices: most powerful method “length-doubling
algorithm”, combines brute force enumeration with
inclusion-exclusion. O(u") — O((v/2u)™)L.

'R. Schram et al., J. Stat. Mech.: Theor. Exp., P060109 (2011)
Counting SAW

7 /30

SAW

PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ uN with p ~ 2.64
for Z? and u ~ 4.68 for Z3.

@ So, transform problem and count something else.

@ For 2d lattices: finite lattice method extremely powerful.
Count boundary states instead of walks, O(1.3")
(unfortunately, still exponential). Recently, lwan Jensen found
c7o = 10194710293557466193787900071923676 for Z2!

@ For 3d lattices: most powerful method “length-doubling
algorithm”, combines brute force enumeration with

inclusion-exclusion. O(u") — O((v/2u)™)L.

@ | think there are strong prospects to apply length-doubling
algorithm to other problems, and improve its efficiency.

'R. Schram et al., J. Stat. Mech.: Theor. Exp., P060109 (2011)
Counting SAW

7 /30

SAW

PERM Pivot SAW-tree Observable Minimizing error Conclusion

Direct enumeration does not get far, cy ~ uN with u ~ 2.64
for Z? and u ~ 4.68 for Z3.

So, transform problem and count something else.

@ For 2d lattices: finite lattice method extremely powerful.

Count boundary states instead of walks, O(1.3")
(unfortunately, still exponential). Recently, lwan Jensen found
c7o = 10194710293557466193787900071923676 for Z2!

For 3d lattices: most powerful method “length-doubling
algorithm”, combines brute force enumeration with

inclusion-exclusion. O(u") — O((v/2u)™)L.

| think there are strong prospects to apply length-doubling
algorithm to other problems, and improve its efficiency.

@ c35 = 2941370856334701726560670 for Z3.

'R. Schram et al., J. Stat. Mech.: Theor. Exp., P060109 (2011)

Counting SAW

7 /30

SAW

PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Direct enumeration does not get far, cy ~ uN with p ~ 2.64

for Z? and u ~ 4.68 for Z3.

@ So, transform problem and count something else.

@ For 2d lattices: finite lattice method extremely powerful.

Count boundary states instead of walks, O(1.3")
(unfortunately, still exponential). Recently, lwan Jensen found
c79 = 10194710293557466193787900071923676 for 7!

@ For 3d lattices: most powerful method “length-doubling

algorithm”, combines brute force enumeration with

inclusion-exclusion. O(u") — O((v/2u)™)L.

@ | think there are strong prospects to apply length-doubling

algorithm to other problems, and improve its efficiency.

@ c35 = 2941370856334701726560670 for Z3.

@ Series analysis used to extract information about asymptotic

behaviour.

'R. Schram et al., J. Stat. Mech.: Theor. Exp., P060109 (2011)
Counting SAW

7 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Wish to estimate ¢y beyond limits accessible to exact
enumeration.

Counting SAW

8/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Wish to estimate ¢y beyond limits accessible to exact
enumeration.

@ Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cy/(2d)N ~ 4.68V /6N for Z3.

Counting SAW

8 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Wish to estimate ¢y beyond limits accessible to exact
enumeration.

@ Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cy/(2d)N ~ 4.68V /6N for Z3.

@ Can improve slightly: forbid immediate reversals in the walk.
Probability = ¢,/2d/(2d — 1)VN=1 ~ 4.68N /6/5N~1 for Z3.

Counting SAW

8 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Wish to estimate ¢y beyond limits accessible to exact
enumeration.

@ Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cy/(2d)N ~ 4.68V /6N for Z3.

@ Can improve slightly: forbid immediate reversals in the walk.
Probability = ¢,/2d/(2d — 1)VN=1 ~ 4.68N /6/5N~1 for Z3.

@ For N =100 only 1 in 1000 random walks with no immediate
reversals is a SAW. Cannot push this much further.

Counting SAW

8 /30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

9/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

@ This introduces bias: compact walks which have few choices
available are preferred.

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.
@ This introduces bias: compact walks which have few choices
available are preferred.

@ Correct bias by weighting walks.

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

@ This introduces bias: compact walks which have few choices
available are preferred.

@ Correct bias by weighting walks.
o Weights provide an estimator of ¢y, cy = (Wh).

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

@ This introduces bias: compact walks which have few choices
available are preferred.

@ Correct bias by weighting walks.

o Weights provide an estimator of ¢y, cy = (Wh).

@ Two issues:

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

@ This introduces bias: compact walks which have few choices
available are preferred.

@ Correct bias by weighting walks.

o Weights provide an estimator of ¢y, cy = (Wh).

@ Two issues:

m High variance (poor estimator of cy)

Counting SAW

10 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Rosenbluth sampling: only choose free edges.

@ This introduces bias: compact walks which have few choices
available are preferred.

@ Correct bias by weighting walks.

o Weights provide an estimator of ¢y, cy = (Wh).

@ Two issues:

m High variance (poor estimator of cy)
m Attrition still occurs, since walks can become trapped. Can’t
sample truly long walks (ok up to N of the order of hundreds).

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

Counting SAW

11/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

@ Prune: low weight walks, either discard with P = 0.5 or
double weight.

Counting SAW

11/30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

@ Prune: low weight walks, either discard with P = 0.5 or
double weight.

@ Enrich: high weight walks, make copies, ensure total weight
remains the same.

Counting SAW

11 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

@ Prune: low weight walks, either discard with P = 0.5 or
double weight.

@ Enrich: high weight walks, make copies, ensure total weight
remains the same.

@ PERM: sensible choices for enrichment ensure attrition is
eliminated, variance reduced.

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

@ Prune: low weight walks, either discard with P = 0.5 or
double weight.

@ Enrich: high weight walks, make copies, ensure total weight
remains the same.

@ PERM: sensible choices for enrichment ensure attrition is
eliminated, variance reduced.

@ Dramatically better than Rosenbluth sampling, arbitrarily
large N achievable.

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

@ Prune: low weight walks, either discard with P = 0.5 or
double weight.

@ Enrich: high weight walks, make copies, ensure total weight
remains the same.

@ PERM: sensible choices for enrichment ensure attrition is
eliminated, variance reduced.

@ Dramatically better than Rosenbluth sampling, arbitrarily
large N achievable.

@ Sophisticated choices for pruning and enrichment algorithms
can reduce correlations and variance.

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Factors limiting the efficiency of PERM.

@ Correlations introduced by enrichment.

Counting SAW

12 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Factors limiting the efficiency of PERM.
@ Correlations introduced by enrichment.

@ Variance of sample is reduced, but not eliminated. (In
practice, variance can be essentially eliminated, at the expense
of stronger correlation.)

Counting SAW

12 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Factors limiting the efficiency of PERM.
@ Correlations introduced by enrichment.

@ Variance of sample is reduced, but not eliminated. (In
practice, variance can be essentially eliminated, at the expense
of stronger correlation.)

@ Intrinsic limit: CPU time O(N) to produce a single walk.
(Prohibitive for truly large N).

Counting SAW

12 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Factors limiting the efficiency of PERM.
@ Correlations introduced by enrichment.

@ Variance of sample is reduced, but not eliminated. (In
practice, variance can be essentially eliminated, at the expense
of stronger correlation.)

@ Intrinsic limit: CPU time O(N) to produce a single walk.
(Prohibitive for truly large N).

@ Will now describe a method that overcomes each of these
deficiencies.

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

To calculate ¢y efficiently we need to

@ Utilise most efficient sampling method, rapidly move around
state space.

Counting SAW

13/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

To calculate ¢y efficiently we need to

@ Utilise most efficient sampling method, rapidly move around
state space.

o Utilise efficient data structures.

Counting SAW

13/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

To calculate ¢y efficiently we need to

@ Utilise most efficient sampling method, rapidly move around
state space.

o Utilise efficient data structures.

@ Find a suitable observable, with low variance.

Counting SAW

13 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

To calculate ¢y efficiently we need to

@ Utilise most efficient sampling method, rapidly move around
state space.

o Utilise efficient data structures.
@ Find a suitable observable, with low variance.

@ Design computer experiment to minimise statistical error.

Counting SAW

13 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

To calculate ¢y efficiently we need to

@ Utilise most efficient sampling method, rapidly move around
state space.

o Utilise efficient data structures.
@ Find a suitable observable, with low variance.
@ Design computer experiment to minimise statistical error.

@ Will see that working with fixed length walks confers dramatic
advantage over growth algorithms.

Counting SAW

13 /30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWs of a particular length.
@ Markov chain:

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWs of a particular length.
@ Markov chain:
m Select a pivot site uniformly at random.

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.
@ Markov chain:

m Select a pivot site uniformly at random.
m Randomly choose a lattice symmetry g (rotation or reflection).

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.
@ Markov chain:

m Select a pivot site uniformly at random.

m Randomly choose a lattice symmetry g (rotation or reflection).

m Apply this symmetry to one of the two sub-walks created by
splitting the walk at the pivot site.

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.

@ Markov chain:
m Select a pivot site uniformly at random.
m Randomly choose a lattice symmetry g (rotation or reflection).
m Apply this symmetry to one of the two sub-walks created by
splitting the walk at the pivot site.
m If walk is self-avoiding: accept the pivot and update the
configuration.

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.

@ Markov chain:

Select a pivot site uniformly at random.

Randomly choose a lattice symmetry g (rotation or reflection).
Apply this symmetry to one of the two sub-walks created by
splitting the walk at the pivot site.

If walk is self-avoiding: accept the pivot and update the
configuration.

If walk is not self-avoiding: reject the pivot and keep the old
configuration.

Counting SAW

14 /30

SAW

Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Pivot algorithm

@ Sample from the set of SAWSs of a particular length.

@ Markov chain:

Select a pivot site uniformly at random.

Randomly choose a lattice symmetry g (rotation or reflection).
Apply this symmetry to one of the two sub-walks created by
splitting the walk at the pivot site.

If walk is self-avoiding: accept the pivot and update the
configuration.

If walk is not self-avoiding: reject the pivot and keep the old
configuration.

@ Ergodic, samples SAWs uniformly at random.

Counting SAW

14 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

I—o—o \ > I—o—o ‘

Example pivot move

Counting SAW

15 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Why is it so effective?

@ Pivots are rarely successful, Pr = O(N=P), p ~ 0.11 for Z3.

Counting SAW

16 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Why is it so effective?

@ Pivots are rarely successful, Pr = O(N=P), p ~ 0.11 for Z3.

@ Every time a pivot attempt is successful there is a large
change in global observables.

Counting SAW

16 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Why is it so effective?

@ Pivots are rarely successful, Pr = O(N=P), p ~ 0.11 for Z3.

@ Every time a pivot attempt is successful there is a large
change in global observables.

@ Only need O(1) successful pivots before we have an essentially
new configuration with respect to observables measuring size.

Counting SAW

16 / 30

SAW Enumeration PERM SAW-tree Observable Minimizing error Conclusion

Why is it so effective?

Pivots are rarely successful, Pr = O(N~P), p ~ 0.11 for 73.

Every time a pivot attempt is successful there is a large
change in global observables.

Only need O(1) successful pivots before we have an essentially
new configuration with respect to observables measuring size.

= Tint = O(NP)

Counting SAW

16 / 30

SAW Enumeration PERM Pivot Observable Minimizing error Conclusion

An efficient data structure for SAW

@ Represent SAW as a binary tree.

Counting SAW

17 / 30

SAW Enumeration PERM Pivot Observable Minimizing error Conclusion

An efficient data structure for SAW

@ Represent SAW as a binary tree.

@ Enables global moves like pivots to be performed in CPU time
T(N) = O(log N).

Counting SAW

17 / 30

SAW Enumeration PERM Pivot Observable Minimizing error Conclusion

An efficient data structure for SAW

@ Represent SAW as a binary tree.

@ Enables global moves like pivots to be performed in CPU time
T(N) = O(log N).

o c.f. O(N'~P) for hash table implementation?.

2Neal Madras and Alan D. Sokal. “The Pivot Algorithm: A Highly Efficient :
Monte Carlo Method for the Self-Avoiding Walk". In: J. Stat. Phys. 50 (1988
pp. 109-186.

Counting SAW

17 / 30

SAW Enumeration PERM Pivot Observable Minimizing error Conclusion

An efficient data structure for SAW

@ Represent SAW as a binary tree.

@ Enables global moves like pivots to be performed in CPU time
T(N) = O(log N).

o c.f. O(N'~P) for hash table implementation?.

@ Dramatic improvement for large N.

2Neal Madras and Alan D. Sokal. “The Pivot Algorithm: A Highly Efficient :
Monte Carlo Method for the Self-Avoiding Walk". In: J. Stat. Phys. 50 (1988
pp. 109-186.

Counting SAW

17 / 30

SAW Enumeration PERM Pivot Observable Minimizing error Conclusion

L 1,
/ \ / \
- b
A A AN A

SAW-tree representation of a walk.

Counting SAW

SAW Enumeration PERM Pivot SAW-tree Minimizing error Conclusion
How to calculate cp?

@ Would like to apply pivot algorithm in canonical ensemble.

Counting SAW

19 / 30

SAW Enumeration PERM Pivot SAW-tree Minimizing error Conclusion
How to calculate cp?

@ Would like to apply pivot algorithm in canonical ensemble.
@ Approach: measure probability that object from larger set is a
SAW, |S| = P(x € S|x € T)|T|, with | T| known.

Counting SAW

19 / 30

SAW Enumeration PERM Pivot SAW-tree Minimizing error Conclusion
How to calculate cp?

@ Would like to apply pivot algorithm in canonical ensemble.

@ Approach: measure probability that object from larger set is a
SAW, |S| = P(x € S|x € T)|T|, with | T| known.

@ Obvious choice: concatenating pairs of SAWSs. Every
M + N-step walk can be split into M and N step subwalks
= CM+N S CrCn for all M, N.

Counting SAW

19 /30

SAW

Enumeration PERM Pivot SAW-tree Minimizing error Conclusion
How to calculate cp?

@ Would like to apply pivot algorithm in canonical ensemble.

@ Approach: measure probability that object from larger set is a
SAW, |S| = P(x € S|x € T)|T|, with | T| known.

@ Obvious choice: concatenating pairs of SAWSs. Every
M + N-step walk can be split into M and N step subwalks
= CM+N S CrCn for all M, N.

@ Sy set of walks of length N.

Counting SAW

19 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

How to calculate cp?

Would like to apply pivot algorithm in canonical ensemble.
Approach: measure probability that object from larger set is a
SAW, |S| = P(x € S|x € T)|T|, with | T| known.

@ Obvious choice: concatenating pairs of SAWSs. Every

M + N-step walk can be split into M and N step subwalks
= CM+N S CrCn for all M, N.

Sy set of walks of length N.

|5I\/I+N| = P(wl owy € 5M+N|(w1,w2) € Sy x 5N)|5MH5N|

Counting SAW

19 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

How to calculate cp?

Would like to apply pivot algorithm in canonical ensemble.
Approach: measure probability that object from larger set is a
SAW, |S| = P(x € S|x € T)|T|, with | T| known.

@ Obvious choice: concatenating pairs of SAWSs. Every

M + N-step walk can be split into M and N step subwalks
= CM+N S CrCn for all M, N.

Sy set of walks of length N.

|5I\/I+N| = P(wl owy € 5M+N|(w1,w2) € Sy x 5N)|5MH5N|
Indicator function for successful concatenation is our
observable, and

B(wl,WQ) = {

0 if w1 0wy not self-avoiding

1 if wy owy self-avoiding

Counting SAW

19 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

———o0
c © ©
{ (]
B(wi,w2) =1 B(wi,w2) =0

Counting SAW

20 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

A long N step walk can be successively subdivided into smaller
pieces.

Counting SAW

21 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Counting SAW

22 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Could choose m, n = 36 (longest known for Z3):

C72

Bsg36) = ———
(Bs6.36) C36C36

Counting SAW

23 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Could choose m, n = 36 (longest known for Z3):

C72
(Bs6,36) =
C36C36

@ lIterate to obtain estimates for cy for longer walks.

2 N/2k
CN) N/2 o Cox CN/k

CcN =
2 Z
N2 Cnya Cr

= (Bnjany2) (Bujanya) - (Bujinx) V2 e

log cy = log(Bny2,n/2) + 2log(Bnyan/a) + -+

N N
-+ ok log (B k) + M log cx

where ¢ is known.

Counting SAW

23 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Could choose m, n = 36 (longest known for Z3):

C72
(Bs6,36) =
C36C36

@ lIterate to obtain estimates for cy for longer walks.

2 N/2k
CN CN/2 o Cok CN/k

CcN =
C/2v/2 CI‘tI/4 Ck
= (Bnjany2) (Bujanya) - (Bujinx) V2 e

log cy = log(Bny2,n/2) + 2log(Bnyan/a) + -+

N N
-+ ok log (B k) + M log ¢

where ¢ is known.

@ Telescoping, with length doubling at each iteration.

Counting SAW

23 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Could choose m, n = 36 (longest known for Z3):

C72
C36C36

(Bs6,36) =

@ lIterate to obtain estimates for cy for longer walks.

2 N/2k

CN) N/2) Cox N/k
N = 2 A Nk Ck
N/2 N/4 Ck

= (Bnjany2) (Bujanya) - (Bujinx) V2 e

log cy = log(Bny2,n/2) + 2log(Bnyan/a) + -+

N N
-+ ok log (B k) + M log ¢

where ¢ is known.
@ Telescoping, with length doubling at each iteration.

o C.f. sequential growth, N steps, product of N factors.

Counting SAW

23 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Can also use cy ~ A,u’VN”Y*1 to estimate u:

log uy = — Iog Cx + — |Og<Bk k> pe— |Og<82k 2k>

k 2k 4k
+ N log (B /2,n/2)
—1)logN logA
= log p + (y=1)log + °8 + corrections

N N

Counting SAW

24/ 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

@ Can also use cy ~ A,u’VN”Y*1 to estimate u:

log uy = |Og Cx + — |Og<Bk k> pe— |Og<82k 2k>

k 2k 4k
+ N log (B /2,n/2)
—1)logN logA
= log u + (v~ 1)log + °8 + corrections

N N

@ Corrections vanish with increasing N! In limit of large N
systematic error of estimator — 0.

Counting SAW

24 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

@ Need to calculate (B k), (Bok2k), - -

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

@ Need to calculate (B k), (Bok2k), - -
@ Use pivot algorithm / SAW-tree.

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

@ Need to calculate (B k), (Bok2k), - -
@ Use pivot algorithm / SAW-tree.

@ How many pivots must be completed before two walks are
“essentially new" configurations with respect to observable B?

Counting SAW

25 / 30

SAW

Enumeration PERM Pivot SAW-tree Minimizing error Conclusion
Scale free moves

@ Need to calculate (B k), (Bok2k), - -
@ Use pivot algorithm / SAW-tree.

@ How many pivots must be completed before two walks are
“essentially new" configurations with respect to observable B?

@ Shape of walks close to the joint clearly important.

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

Need to calculate (By k), (Bak2k), - -
Use pivot algorithm / SAW-tree.

How many pivots must be completed before two walks are
“essentially new" configurations with respect to observable B?

Shape of walks close to the joint clearly important.

Uniform pivot sites: Tine = Q(N).

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

@ Need to calculate (B k), (Bok2k), - -
@ Use pivot algorithm / SAW-tree.

@ How many pivots must be completed before two walks are
“essentially new" configurations with respect to observable B?

@ Shape of walks close to the joint clearly important.

@ Uniform pivot sites: Tin, = Q(N).

@ Choose distance from joint uniformly from all distance scales,
i.e. u = log(distance) chosen uniformly at random.

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Scale free moves

@ Need to calculate (B k), (Bok2k), - -
@ Use pivot algorithm / SAW-tree.

@ How many pivots must be completed before two walks are
“essentially new" configurations with respect to observable B?

@ Shape of walks close to the joint clearly important.

@ Uniform pivot sites: Tin, = Q(N).

@ Choose distance from joint uniformly from all distance scales,
i.e. u = log(distance) chosen uniformly at random.

@ Now: Ty = NP Iog2 N.

Counting SAW

25 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

Error estimate

@ Expected error, for same CPU time, diminishes as a power law
for higher order terms in the sum!

N N
log cy = m log ci + P log(By k) + - - - + log(Bn/2,n/2)

Counting SAW

26 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

Error estimate

@ Expected error, for same CPU time, diminishes as a power law
for higher order terms in the sum!

N N
log cy = m log ci + P log(By k) + - - - + log(Bn/2,n/2)

@ Partition CPU time amongst different terms to minimize
overall statistical error (short test run).

o :Z—’ Total timet:Zt,-
aj > ai

=t = t o=
1 " \/E

Counting SAW

26 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

Error estimate

@ Expected error, for same CPU time, diminishes as a power law
for higher order terms in the sum!

N N
log cy = m log ci + P log(By k) + - - - + log(Bn/2,n/2)

@ Partition CPU time amongst different terms to minimize
overall statistical error (short test run).

2
2 _ dai . _)
o —Z E Total time t—Zt,
aj aj
i t, o — E i
> ai
@ Can accurately predict error on estimate for ¢y prior to start
of computer experiment.

=t =

Counting SAW

26 / 30

SAW

Enumeration PERM Pivot SAW-tree Observable Conclusion
.
Error estimate

@ Expected error, for same CPU time, diminishes as a power law
for higher order terms in the sum!
N N
logey = —-log e+ o log(Bkk) + - + log(Bn/2,n/2)
@ Partition CPU time amongst different terms to minimize
overall statistical error (short test run).

2
2 i :
o° = -+ Total time t = ti
I S
aj E aj
t, o=
> aj Vit
@ Can accurately predict error on estimate for ¢y prior to start
of computer experiment.
@ Dominated by low k contribution, appropriate partitioning of .

effort reduced error by O(+/log N). Relative error in cp
proportional to 1/k.

=t =

Counting SAW

26 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

@ Can make unbiased estimates of ¢y, for N up to 10° or so.

Counting SAW

27 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

@ Can make unbiased estimates of ¢y, for N up to 10° or so.

@ Can push calculation to sufficiently large N s.t. asymptotic
corrections for p completely eliminated.

Counting SAW

27 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Conclusion

@ Can make unbiased estimates of ¢y, for N up to 10° or so.

@ Can push calculation to sufficiently large N s.t. asymptotic
corrections for p completely eliminated.

@ = Systematic error for u negligible, error purely statistical.

Counting SAW

27 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error
Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

@ cos71 = 1.43323(8) x 106352

Counting SAW

28 / 30

SAW

Enumeration PERM Pivot SAW-tree Observable Minimizing error
Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

@ cos71 = 1.43323(8) x 106352

@ C3g797311 = 7 x 1020018276 - Confidence interval of mantissa is
(6.6,8.2).

Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error
Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

@ coq71 = 1.43323(8) x 106352

@ C3g797311 = 7 x 1020018276 - Confidence interval of mantissa is
(6.6,8.2).

@ For comparison, see3. Relative error from PERM and related
algorithms of the order of 1073 for short walks of 100 steps.
Not a fair comparison:

3E. J. Janse van Rensburg. “Approximate Enumeration of Self-Avoiding B
Walks". In: Algorithmic Probability and Combinatorics 520 (2010), pp. 127-151.
Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error
Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

@ coq71 = 1.43323(8) x 106352

@ C3g797311 = 7 x 1020018276 - Confidence interval of mantissa is
(6.6,8.2).

@ For comparison, see3. Relative error from PERM and related
algorithms of the order of 1073 for short walks of 100 steps.
Not a fair comparison:

® Not much CPU time used, i.e. not serious computer
experiments.

3E. J. Janse van Rensburg. “Approximate Enumeration of Self-Avoiding B
Walks". In: Algorithmic Probability and Combinatorics 520 (2010), pp. 127-151.
Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error
Results

o Calculated log ¢y with relative error of approximately
4 x 107° up to N = 38797311 (about 60000 CPU hours).

@ Concentrated on Z3 because asymptotic behaviour for Z? well
understood from series.

@ coq71 = 1.43323(8) x 106352

@ C3g797311 = 7 x 1020018276 - Confidence interval of mantissa is
(6.6,8.2).

@ For comparison, see3. Relative error from PERM and related
algorithms of the order of 103 for short walks of 100 steps.
Not a fair comparison:

® Not much CPU time used, i.e. not serious computer
experiments.
m Estimates would degrade for large N. Best case: error
increasing as O(v/N).
3E. J. Janse van Rensburg. “Approximate Enumeration of Self-Avoiding &
Walks" . In: Algorithmic Probability and Combinatorics 520 (2010), pp. 127-151.
Counting SAW

28 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

@ For Z3 we have:

Counting SAW

29 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

@ For Z3 we have:

@ PERM: i = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls")

Counting SAW

29 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

@ For Z3 we have:
@ PERM: i = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls")

@ Series: p = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Counting SAW

29 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

@ For Z3 we have:

@ PERM: i = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls")

@ Series: p = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

@ Series: u = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks")

Counting SAW

29 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Results

@ For Z3 we have:

@ PERM: i = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls")

@ Series: p = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

@ Series: p = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks")

@ Pivot: p = 4.68403993(3), almost 200 times more accurate
than previous best (o = 2.7 x 1078).

Counting SAW

29 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

Counting SAW

30 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

@ Different ingredients fit together to produce extremely
accurate estimates.

Conclusion

Counting SAW

30 / 30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

@ Different ingredients fit together to produce extremely
accurate estimates.

@ Choose a Monte Carlo scheme which enables efficient
sampling (large jumps in state space)

Conclusion

Counting SAW

30 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

@ Different ingredients fit together to produce extremely
accurate estimates.

@ Choose a Monte Carlo scheme which enables efficient
sampling (large jumps in state space)
o Efficient data structures help.

Counting SAW

30 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

@ Different ingredients fit together to produce extremely
accurate estimates.

@ Choose a Monte Carlo scheme which enables efficient
sampling (large jumps in state space)
o Efficient data structures help.

@ Can you do better than incremental growth? (fusing objects
and doubling size, or splitting in two)

Counting SAW

30 /30

SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error

Conclusion

@ Simple computer experiment.

@ Different ingredients fit together to produce extremely
accurate estimates.

@ Choose a Monte Carlo scheme which enables efficient
sampling (large jumps in state space)
o Efficient data structures help.

@ Can you do better than incremental growth? (fusing objects
and doubling size, or splitting in two)

@ Is the self-avoiding walk model uniquely favourable, or can
these ideas be applied elsewhere?

Counting SAW

30 /30

	Self-avoiding walks
	Enumeration
	Direct sampling and PERM

