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Self-avoiding walk model

A walk on a lattice, step to neighbouring site provided it has
not already been visited.

Models polymers in good solvent limit.

Exactly captures universal properties such as critical
exponents.

N-step SAW on Zd is a mapping ω : {0, 1, . . . ,N} → Zd with
|ω(i + 1)− ω(i)| = 1 for each i (|x | denotes the Euclidean
norm of x), and with ω(i) 6= ω(j) for all i 6= j .

For uniqueness, choose ω(0) = 0.
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SAW Not a SAW

4 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Asymptotic behaviour

The number of SAW of length N, cN , tells us about how many
conformations are available to SAW of a particular length:

cN ∼ A Nγ−1µN [1 + corrections]

For Z2, cN = 1, 4, 12, 36, 100, 284, 780, 2172, · · ·
For Z3, cN = 1, 6, 30, 150, 726, 3534, · · ·
γ is a universal exponent.

µ is the connective constant; lattice dependent.

(Also interested in the mean size of a SAW)
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Long history, has been studied by physicists and
mathematicians for 60 years.

Rich and active research area (more than 1800 articles in Web
of Science with SAW in title / abstract).

Hard! No immediate prospect of exact solution, although
recent progress with exact results for d = 2.

Has driven development of advanced algorithms for
enumeration and Monte Carlo simulation.
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Direct enumeration does not get far, cN ∼ µN with µ ≈ 2.64
for Z2 and µ ≈ 4.68 for Z3.

So, transform problem and count something else.

For 2d lattices: finite lattice method extremely powerful.
Count boundary states instead of walks, O(1.3n)
(unfortunately, still exponential). Recently, Iwan Jensen found
c79 = 10194710293557466193787900071923676 for Z2!

For 3d lattices: most powerful method “length-doubling
algorithm”, combines brute force enumeration with
inclusion-exclusion. O(µn)→ O((

√
2µ)n)1.

I think there are strong prospects to apply length-doubling
algorithm to other problems, and improve its efficiency.

c36 = 2941370856334701726560670 for Z3.

Series analysis used to extract information about asymptotic
behaviour.

1R. Schram et al., J. Stat. Mech.: Theor. Exp., P060109 (2011)
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Wish to estimate cN beyond limits accessible to exact
enumeration.

Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cN/(2d)N ≈ 4.68N/6N for Z3.

Can improve slightly: forbid immediate reversals in the walk.
Probability = cn/2d/(2d − 1)N−1 ≈ 4.68N/6/5N−1 for Z3.

For N = 100 only 1 in 1000 random walks with no immediate
reversals is a SAW. Cannot push this much further.

8 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Wish to estimate cN beyond limits accessible to exact
enumeration.

Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cN/(2d)N ≈ 4.68N/6N for Z3.

Can improve slightly: forbid immediate reversals in the walk.
Probability = cn/2d/(2d − 1)N−1 ≈ 4.68N/6/5N−1 for Z3.

For N = 100 only 1 in 1000 random walks with no immediate
reversals is a SAW. Cannot push this much further.

8 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Wish to estimate cN beyond limits accessible to exact
enumeration.

Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cN/(2d)N ≈ 4.68N/6N for Z3.

Can improve slightly: forbid immediate reversals in the walk.
Probability = cn/2d/(2d − 1)N−1 ≈ 4.68N/6/5N−1 for Z3.

For N = 100 only 1 in 1000 random walks with no immediate
reversals is a SAW. Cannot push this much further.

8 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Wish to estimate cN beyond limits accessible to exact
enumeration.

Obvious approach: simple sampling. Generate a simple
random walk of length N, calculate probability that RW is
self-avoiding. Probability = cN/(2d)N ≈ 4.68N/6N for Z3.

Can improve slightly: forbid immediate reversals in the walk.
Probability = cn/2d/(2d − 1)N−1 ≈ 4.68N/6/5N−1 for Z3.

For N = 100 only 1 in 1000 random walks with no immediate
reversals is a SAW. Cannot push this much further.

8 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

9 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Rosenbluth sampling: only choose free edges.

This introduces bias: compact walks which have few choices
available are preferred.

Correct bias by weighting walks.

Weights provide an estimator of cN , cN = 〈WN〉.
Two issues:

High variance (poor estimator of cN)
Attrition still occurs, since walks can become trapped. Can’t
sample truly long walks (ok up to N of the order of hundreds).
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PERM: Pruned Enriched Rosenbluth Sampling, a variant of
sequential importance sampling.

Prune: low weight walks, either discard with P = 0.5 or
double weight.

Enrich: high weight walks, make copies, ensure total weight
remains the same.

PERM: sensible choices for enrichment ensure attrition is
eliminated, variance reduced.

Dramatically better than Rosenbluth sampling, arbitrarily
large N achievable.

Sophisticated choices for pruning and enrichment algorithms
can reduce correlations and variance.
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Factors limiting the efficiency of PERM.

Correlations introduced by enrichment.

Variance of sample is reduced, but not eliminated. (In
practice, variance can be essentially eliminated, at the expense
of stronger correlation.)

Intrinsic limit: CPU time O(N) to produce a single walk.
(Prohibitive for truly large N).

Will now describe a method that overcomes each of these
deficiencies.
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To calculate cN efficiently we need to

Utilise most efficient sampling method, rapidly move around
state space.

Utilise efficient data structures.

Find a suitable observable, with low variance.

Design computer experiment to minimise statistical error.

Will see that working with fixed length walks confers dramatic
advantage over growth algorithms.
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Pivot algorithm

Sample from the set of SAWs of a particular length.

Markov chain:

Select a pivot site uniformly at random.
Randomly choose a lattice symmetry q (rotation or reflection).
Apply this symmetry to one of the two sub-walks created by
splitting the walk at the pivot site.
If walk is self-avoiding: accept the pivot and update the
configuration.
If walk is not self-avoiding: reject the pivot and keep the old
configuration.

Ergodic, samples SAWs uniformly at random.
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Example pivot move
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Why is it so effective?

Pivots are rarely successful, Pr = O(N−p), p ≈ 0.11 for Z3.

Every time a pivot attempt is successful there is a large
change in global observables.

Only need O(1) successful pivots before we have an essentially
new configuration with respect to observables measuring size.

⇒ τint = O(Np).
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An efficient data structure for SAW

Represent SAW as a binary tree.

Enables global moves like pivots to be performed in CPU time
T (N) = O(log N).

c.f. O(N1−p) for hash table implementation2.

Dramatic improvement for large N.

2Neal Madras and Alan D. Sokal. “The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk”. In: J. Stat. Phys. 50 (1988),
pp. 109–186.
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SAW-tree representation of a walk.
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How to calculate cN?

Would like to apply pivot algorithm in canonical ensemble.
Approach: measure probability that object from larger set is a
SAW, |S | = P(x ∈ S |x ∈ T )|T |, with |T | known.
Obvious choice: concatenating pairs of SAWs. Every
M + N-step walk can be split into M and N step subwalks
⇒ cM+N ≤ cMcN for all M,N.
SN set of walks of length N.
|SM+N | = P(ω1 ◦ ω2 ∈ SM+N |(ω1, ω2) ∈ SM × SN)|SM ||SN |
Indicator function for successful concatenation is our
observable, and

B(ω1, ω2) =

{
0 if ω1 ◦ ω2 not self-avoiding

1 if ω1 ◦ ω2 self-avoiding
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B(ω1, ω2) = 1 B(ω1, ω2) = 0
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A long N step walk can be successively subdivided into smaller
pieces.

21 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

22 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Could choose m, n = 36 (longest known for Z3):

〈B36,36〉 =
c72

c36c36

Iterate to obtain estimates for cN for longer walks.

cN =
cN

c2
N/2

·
c2
N/2

c4
N/4

· · ·
c
N/2k
2k

c
N/k
k

c
N/k
k

= 〈BN/2,N/2〉〈BN/4,N/4〉2 · · · 〈BN/k,N/k〉N/2kc
N/k
k

log cN = log〈BN/2,N/2〉+ 2 log〈BN/4,N/4〉+ · · ·

· · ·+ N

2k
log〈Bk,k〉+

N

k
log ck

where ck is known.

Telescoping, with length doubling at each iteration.

C.f. sequential growth, N steps, product of N factors.
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Can also use cN ∼ AµNNγ−1 to estimate µ:

logµN =
1

k
log ck +

1

2k
log〈Bk,k〉+

1

4k
log〈B2k,2k〉+ · · ·

· · ·+ 1

N
log〈BN/2,N/2〉

= logµ+
(γ − 1) log N

N
+

log A

N
+ corrections

Corrections vanish with increasing N! In limit of large N
systematic error of estimator → 0.
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Scale free moves

Need to calculate 〈Bk,k〉, 〈B2k,2k〉, · · ·
Use pivot algorithm / SAW-tree.

How many pivots must be completed before two walks are
“essentially new” configurations with respect to observable B?

Shape of walks close to the joint clearly important.

Uniform pivot sites: τ̃int = Ω(N).

Choose distance from joint uniformly from all distance scales,
i.e. u = log(distance) chosen uniformly at random.

Now: τ̃int = Np log2 N.
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Choose distance from joint uniformly from all distance scales,
i.e. u = log(distance) chosen uniformly at random.

Now: τ̃int = Np log2 N.
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Error estimate

Expected error, for same CPU time, diminishes as a power law
for higher order terms in the sum!

log cN =
N

k
log ck +

N

2k
log〈Bk,k〉+ · · ·+ log〈BN/2,N/2〉

Partition CPU time amongst different terms to minimize
overall statistical error (short test run).

σ2 =
∑ a2i

ti
Total time t =

∑
ti

⇒ ti =
ai∑

ai
t, σ =

∑
ai√
t

Can accurately predict error on estimate for cN prior to start
of computer experiment.
Dominated by low k contribution, appropriate partitioning of
effort reduced error by O(

√
log N). Relative error in cN

proportional to 1/k.
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Can make unbiased estimates of cN , for N up to 109 or so.

Can push calculation to sufficiently large N s.t. asymptotic
corrections for µ completely eliminated.

⇒ Systematic error for µ negligible, error purely statistical.
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Results

Calculated log cN with relative error of approximately
4× 10−9 up to N = 38797311 (about 60000 CPU hours).

Concentrated on Z3 because asymptotic behaviour for Z2 well
understood from series.

c9471 = 1.43323(8)× 106352

c38797311 = 7× 1026018276. Confidence interval of mantissa is
(6.6, 8.2).
For comparison, see3. Relative error from PERM and related
algorithms of the order of 10−3 for short walks of 100 steps.
Not a fair comparison:

Not much CPU time used, i.e. not serious computer
experiments.
Estimates would degrade for large N. Best case: error
increasing as O(

√
N).

3E. J. Janse van Rensburg. “Approximate Enumeration of Self-Avoiding
Walks”. In: Algorithmic Probability and Combinatorics 520 (2010), pp. 127–151.
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Results

For Z3 we have:

PERM: µ = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls”)

Series: µ = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Series: µ = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks”)

Pivot: µ = 4.68403993(3), almost 200 times more accurate
than previous best (σ = 2.7× 10−8).

29 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Results

For Z3 we have:

PERM: µ = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls”)

Series: µ = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Series: µ = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks”)

Pivot: µ = 4.68403993(3), almost 200 times more accurate
than previous best (σ = 2.7× 10−8).

29 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Results

For Z3 we have:

PERM: µ = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls”)

Series: µ = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Series: µ = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks”)

Pivot: µ = 4.68403993(3), almost 200 times more accurate
than previous best (σ = 2.7× 10−8).

29 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Results

For Z3 we have:

PERM: µ = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls”)

Series: µ = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Series: µ = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks”)

Pivot: µ = 4.68403993(3), almost 200 times more accurate
than previous best (σ = 2.7× 10−8).

29 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Results

For Z3 we have:

PERM: µ = 4.684038(6) (Hsu and Grassberger, “Polymers
confined between two parallel plane walls”)

Series: µ = 4.68404(1) (Clisby, Liang, and Slade,
“Self-avoiding walk enumeration via the lace expansion”)

Series: µ = 4.684040(5) (Schram, Barkema, and Bisseling,
“Exact enumeration of self-avoiding walks”)

Pivot: µ = 4.68403993(3), almost 200 times more accurate
than previous best (σ = 2.7× 10−8).

29 / 30
Counting SAW

N



SAW Enumeration PERM Pivot SAW-tree Observable Minimizing error Conclusion

Conclusion

Simple computer experiment.

Different ingredients fit together to produce extremely
accurate estimates.

Choose a Monte Carlo scheme which enables efficient
sampling (large jumps in state space)

Efficient data structures help.

Can you do better than incremental growth? (fusing objects
and doubling size, or splitting in two)

Is the self-avoiding walk model uniquely favourable, or can
these ideas be applied elsewhere?
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