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 PDEs for evolution of curves and surfaces under isotropic 
and homogeneous processes should be invariant under 
Euclidean group.
Simple example is evolution by mean curvature.
Hypersurface of dimension n-1 embedded in Rn.

� ⇥� ⇤n

n̂ = ‘inward’ unit normal vector.

n̂ · @r(✓, t)
@t

= B̄

This models surface of volatile metals e.g. Mg.
Surfaces of stable metals e.g. Au, evolve by 4th order
surface diffusion. In 2D,
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= �B
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@2

@s2



HRTEM image of grain boundary. 
Z. Zhang et al, Science 302, 846-49 (2003)
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m = tan(⇥) ; �b(T ) = 2�s(T )sin(⇥)



Tritscher & Broadbridge, 1995
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Metal surface near grain boundary



� = particle density 

� = mean volume per particle 

v = mean drift velocity 

v =
�Ds

kT

��
�s

Nernst-Einstein 
Relation 

� = chem pot’l per particle;  

T = temp; k = Boltzmann const; Ds = surf diff const

J = ��vVolume flux on surface 



� = ⇥ [�s(⇤) + ���
s (⇤)]⇥.

Laplace-Herring Equation 1814 - 1950

�s = surface tension

� = arctan yx

Curvature 

Sub this flux model in local cons of mass 
�N

�t
+

�J

�s
= 0

� =
�yxx

(1 + y2
x)3/2



Eq of continuity implies
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Now use � =
����
d2r
ds2
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Mullins Surface Diffusion Eq + bdry conds for grooving

yt = �B �x

⇤
�
1 + y2

x

⇥�1/2
�x

yxx

(1 + y2
x)3/2

⌅

�t = �B ⇥2
x

⇤
f(�) ⇥x

�
�xf(�)

⇧
[f �(�)]2 + [�f �(�) + f(�)]2

⇥⌅

� � 0 , �x � 0, x�⇥.

⇤x

�
�xf(�)

⇤
[f �(�)]2 + [�f �(�) + f(�)]2

⇥
= 0 , x = 0

� = m ,x = 0, t > 0

� = 0 , t = 0 x � 0 ;

yx =



y� = ��x [D(yx)�x [E(yx)yxx]]

Anisotropic surface diffusion 
in terms of rescaled dimensionless variables, 

� = 0; y = 0

x�⇥; y � 0 , yx � 0

x = 0; J = 0 �⇥ �x [E(yx)yxx] = 0

x = 0 ; yx = m(�).

m = tan(⇥) ; �b(T ) = 2�s(T )sin(⇥)



Surface tension 

D(⇥) =
�

� + ⇥
, E(⇥) =

�
�

� + ⇥

⇥3

,

closest to isotropic model 

E(�) =
1

(1 + �2)3/2D(�) =
1

(1 + �2)1/2
,

when � = 2.026

Integrable model

�(�), � = tan�1✓,

E / [�00(�) + �]/[1 + y2
x

]3/2 (Herring eq.)
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Polar plot of surface tension vs angle for 
integrable model 



D = D1(t)D2(yx); E = E1(t)E2(yx)̄

⌧ =

Z
t

0
D1(t)E1(t)dt

From explicit time dependence of mobility and surface 
tension, due to temperature change,

, new time coordinate



µ =
�

� + ⇥
z =

� x

0

� + ⇥

�
dx

µ� = �µzzzz �
1
�

R(⇤)µz ,

where R(�) = �y� (0, �).

Change of variables 

Transforms governing eq to linear PDE

=⇥ z = 0, µzzz =
�R(⇤)

� + m(⇤)
.



Z = z +
1
�

y(0, ⇤) , µ� = �µZZZZ

which has scaling symmetry 

Z̄ = e�Z, ⇥̄ = e4�⇥, µ̄ = µ.

In terms of canonical coords,  

Ȳ = Y, S̄ = S + ⇥, µ̄ = µ.

Then separation of variables is possible   

µ = F (S)G(Y ).

Y = Z��1/4, S = log(�1/4),



µ = F (S)G(Y ).
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y(0, ⇥) = �⇥1/4
��

i=0

bi⇥
i/4

1F3([a], [b1, b2, b3], z) =
��

k=0

(a)k

(b1)k(b2)k(b3)k

zk

k!

(a)k = a(a + 1)(a + 2) . . . (a + k � 1)

Generalized hypergeometric function

For m const, we have similarity solution of form 

y��1/4 = H(x��1/4)

which has scaling symmetry 

For m varying with t, assume



These expansions for y(0,t) and µ(Z,t) can solve the free 
boundary problem with boundary conditions specified 
at unknown location  

x = 0 () Z = y(0, ⌧)/�.

 In order to implement boundary conditions at infinity,
match Laplace transform of power series solution with  

µ̄ = exp

�
�p

1
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µ̄ = exp

�
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1
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C3(p) cos

�
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1
4 Z⇥
2

⇥
+ C4(p) sin

�
p

1
4 Z⇥
2
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+

1
p

By matching with                                  , 
C3(p) and C4(p) can be deduced. 
With j fixed, K1j, K2j, K3j and K4j are linearly dependent 
since they are functions of the two independent power 
series coefficients in 

µ(0, ⌧), & µZ(0, ⌧)

L�1C3(p) and L�1p1/4C4(p)



_________ t=0.0002 
                                                                                               ……………t=0.1 
                                                                                               ---------------t=1 
 
 

m(�) = 1/2 + 1/2 �1/4







Mullins 1957 theory of evaporation-condensation.
Lateral mixing of vapour keeps pressure close to that above flat 
surface. Linear model of non-equilibrium evaporation rate gives

�⌅N

⌅t
= �J =

��(peq � p)⇥
2⇥mkT

,

Laplace showed that energy per unit volume of surface material is  

2�s⇥̄

Omega being spec vol per particle.

so energy platform per particle is                           . E = 2��s⇥̄

 Gibbs-Thompson formula 

implies evaporation rate proportional to mean curvature. 

peq � p = p(eE/kT � 1) ⇡ 2p⌦�̄/kT



�y�N

cos(�)
⇥y

⇥t
=

1
(1 + y2

x)1/2
B

yxx

1 + y2
x

�y

�t
= B

yxx

1 + y2
x

Around linear groove, z-direction is irrelevant. 
Evaporation equation reduces to curve-shortening equation.



CSE in differentiated form

Fujita 1952-54 presented exact similarity solutions for u(x,t) with

Bluman and Reid 1988: these come from “potential” symmetries, or 
from point symmetries of the system 

y
t

= D(y
x

)y
xx

✓
t

= @
x

[D(✓)✓
x

] = @2
x

[arctan(✓)]; ✓ = y
x

; D(✓) = B/(1 + ✓2)

y
x

= ✓ ; y
t

= D(✓)✓
x

D(✓) =
1

a✓ + b
, D(✓) =

1

(a✓ + b)2
, D(✓) =

1

(a✓ + b)2 + c





P. Tritscher & PB,
I.J. Heat Mass Transf 1994



Broadbridge 1989: Exact CSE parametric similarity solution 
for grain boundary groove � ⇥� (�, ⇥) = (x/2

⇤
t, y/2

⇤
t)

⇥ = ��1/2⇤sin[F (⇤; �)] + (1� ⇤2 � �ln⇤)1/2cos[F ] ; 0 ⇥ � ⇥ �⇥

⇥ = ��1/2⇤sin[G(⇤; �)] + (1� ⇤2 � �ln⇤)1/2cos[G] ; �⇥ ⇥ � ⇥ 1

⌅ = m[⇥��H(⇤; �)]

F (⇥; �) =
� �

0
(1� q2 � �lnq)�1/2dq

G(⇥; �) = tan�1m� F (⇥; �) + F (⇥m; �)

H(⇥; �) = ��1/2m�1⇥ sec[F (⇥; �)] ; 0 � � � �⇥

H(⇥; �) = ��1/2m�1⇥ sec[G(⇥; �)] ; �⇥ � � � 1

�⇥ = m�1tan[F (1; �)] ; � =
⇥2

m � 1�m2

⇥2
mln ⇥m

2F (1; �)� F (⇥m; �) = tan�1m

� = m�1tan[F (⇥; �)] ; 0 � � � �⇥

� = m�1tan[G(⇥; �)] ; �⇥ � � � 1



Arrigo et al 1997: for classical diffusion, groove depth F(0) 
proportional to m but for CSE with m sufficiently large, 

�
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m

2
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Groove depth due to surface diffusion.





zt = B[
zrr

(1 + z2r )
1/2

+
1

r
zr]

Evaporation at axi-symmetric surface by mean curvature:

✓ = zr; ⇢ = rt�1/2; ✓ = f(⇢)

zr = m, r = at1/2 ; z = 0, t = 0 ; z ! 0, r ! 1

																																																																																													r=0				
	
	
	
	 	 	 	 	 	 z=0				
	
																																																																																					
	
	
	
																																																																	
	
																																																																
																																																															 r=at1/2	

phase boundary



Gallage, PB, Triadis and Cesana use inverse method
previously applied to 1D nonlinear diffusion  J. Philip (1960).

D(✓) =
�0.5B�1 d⇢

d✓

R ✓
0 ⇢d✓

1 + ✓(1 + ✓2)d ln(⇢)/d✓

Isotropic model



Well-known solutions (mostly trivial) for curve-shortening eq.

Straight lines are steady states.

Shrinking circles radius R(t)=[2B(tc-t)]1/2 .
Tubular pipe of outer,inner radii R,r becomes simply connected
at time r2/2B and disappears at time  R2/2B

Calabi “grim reaper” travelling wave

y + ct =
1
c
log(cos(cx))
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Obtuse open-angle solution = 
grain boundary solution.



Other similarity reductions give rotating spirals, 
or Abresch-Langer 1986 “flowers”with n intersecting petals.

All of these solutions can be recovered by symmetry reductions 
from potential symmetries of CSL, i.e. symmetries of system

yx = u ; yt = D(u)ux

=� yt = D(yx)yxx

and ut = �x[D(u)ux]



Doyle & Vassiliou 1998 classified nonlinear diffusion equations

ut = �x[D(u)ux]

according to compatibility with functional separation of variables

�(u) = f(x)g(t)

For D(u)=1/(1+u2), this leads to 

(1) u=yx=tan(x)    -> y=log(cos x) +t +const 
(vertical grim reaper),

(2) u=x/[2(t0-t) -x2]1/2     ->  shrinking circle

(3) u=[e2(x-t) -1]-1/2     -> rotated (horiz) grim reaper



u2 + 1
u2

= (1 + e2t) cosec2(x),(4)

->  

(K,x0,t0 arbitrary)

y =
1
K

log

�⇤
exp(2BK2[t� t0]) + cos2(K[x� x0]) + cos(K[x� x0])

exp(BK2[t� t0])

⇥
.

(5)  u=cosh(x)/[e-2t-sinh2 x]1/2  ->  rotation of (4) above

- A periodic solution that  can satisfy boundary conds 
y=0 at x=0,L   -J. R. King,  
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Each peak or valley is asymptotic to a grim reaper as                   
Initial conds may resemble diffraction grating. 

t⇥ �⇤

 ----  approx bounds y = ±K [t0 � t] + log(2)/K

B(t-t0)=-0.07  



(6)  u= ± sin x [cos2 x-e2t ]-1/2   
->  

cosh(y)� et0�tcos(x) = 0

x2 + y2 = 2(t0 � t) + O([t0 � t]2)

x
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Figure 1: Evolution by heat shrinking flow of cosh y-5cos x=0



−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

asymptotically approaches two coalescing grim reapers as                  .t⇥ �⇤

t-t0=-10

grimgrim

Long before extinction, ymax ⇥ t0 � t + log(2),
and near extinction, ymax ⇥
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Anisotropy

Physical requirement: 

After rotation of axes by !/2,  0 < B̄0 = D̄(0) <�

0 < B0 = D(0) <�

D(yx) =
1

yx
2
D̄

�
�1
yx

⇥
⇥ B̄0y

�2
x

After rotating back,

yt = B(yx)
yxx

1 + y2
x

= D(yx)yxx



Doyle-Vassiliou classification of diffusion eqs compatible with 
functional separation

log �(u) = v(x) + w(t)

gives one more physically realistic model:

D(u) = D0cos(z(Au))

Au =
� z

0
(cos s)�3/2ds ; � �/2 < z < �/2

D(u) =
1

1 + u2
+ O(u4) u small

= (u/
�

2)�2 + O(u�4) u large

With A= 20.5,
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Functionally separated solution approaches grim reaper at large 
negative times, like others that we saw above !!



Grooving by evaporation-condensation solved exactly: PB 1989  

Grooving by surface diffusion, with slope yx(0,t) constant, on 
nearly isotropic surface, solved by Tritscher & PB 1995.

Solved exactly when m depends on t, due to temperature 
dependence of surface tension-PB & Goard 2010.

For what anisotropic materials do Angenent ovals, grim reapers
and diffraction grating solutions exist ?—PB & P. Vassiliou 2011

Set up reliable semi-discrete approximation
for boundary conditions that can’t be treated analytically- 
Zhang & Schnabel 1993, Lee 1997, PB & Goard 2012.

Integrable nonlinear discretised model with self-adapting non-
uniform grid- PB, Kajiwara, Maruno & Triadis, in progress.
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