On the Willmore Functional and Applications

Yann Bernard

Monash University

La Trobe University

January 26, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

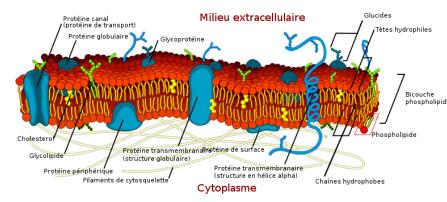
Some History

- ca. 1740: Leonhard Euler and Daniel Bernoulli study the 1-dim. elastica
- ► ca. 1815: Sophie Germain introduces mean curvature
- ca. 1925: Wilhelm Blaschke tries to tie minimal surfaces and conformal invariance
- in 1965: Tom Willmore (re)discovers the Willmore functional

A Biological Motivation

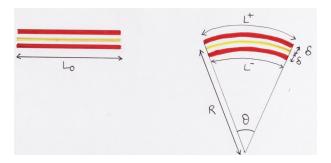
- ▶ Production rate: 2.4×10^6 / sec. Total: $25 \times 10^{12} = 70\%$ of your cells
- No nucleus, no organelle, no DNA
- Size: $\sim 7\mu m$ diameter and $\sim 1\mu m$ thick.
- "Heatlhy" red blood cells look like biconcave disks
- Modelled as droplet of liquid (haemoglobin) within thin plasmic membrane

Membrane is a lipid bilayer



- Membrane is incompressible (observation): area and volume constant
- If no shearing/stretching: which force dictates shape?
- Canham, Evans, Deuling, Helfrich postulate: the elastic energy.

Modeling the Energy



Exterior heads have available: $L^+ = (R + \delta)\theta$ Interior heads have available: $L^{-} = (R - \delta)\theta$ Tails have available: $L = R\theta \simeq L_0$

Energy modeled by elastic energy of a spring with intrinsic stiffness σ (N):

$$E^{\pm} = \frac{\sigma}{2L_0}(L^{\pm}-L_0)^2$$

Total energy of membrane element:

$$E = E^+ + E^- = \sigma \delta^2 \frac{L_0}{R^2}$$

Sum all infinitesimal contributions to obtain the energy

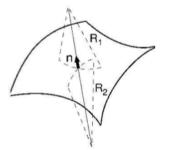
$$E = \mu \int_{\text{membrane}} \frac{1}{R^2} d\ell , \qquad \mu := \sigma \delta^2 .$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · ○ へ ○

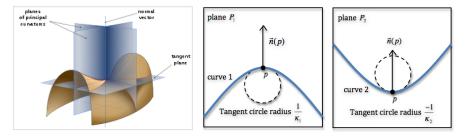
R at point p is the radius of best-fitting circle tangent to membrane at p.

For a 2-dimensional membrane:

$$E = \mu \int_{\text{membrane}} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)^2 ds , \qquad [\mu] = \text{Joules} .$$



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



Mean curvature :
$$H = \frac{1}{2}(\kappa_1 + \kappa_2)$$

Willmore energy :

$$W(\Sigma) := \int_{\Sigma} H^2 dA$$

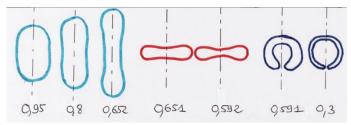
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Minimizing the Energy

Fixing area A and volume V, the energy is:

$$\mathsf{E}(\mathbf{\Sigma}) = \int_{\mathbf{\Sigma}} H^2 d\mathbf{A} - \alpha \mathbf{A}(\mathbf{\Sigma}) - \beta \mathbf{V}(\mathbf{\Sigma}) \,.$$

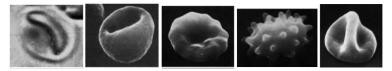
- Many shapes are possible (how many? what are they?)
- Define the reduced volume: $\lambda := 6\sqrt{\pi} \frac{V}{A^{3/2}}$.
- Imposing axial symmetry:



• Red blood cell: $V \simeq 100 \mu m^3$ and $A \simeq 140 \mu m^2$, so $\lambda \simeq 0.64$.

However...

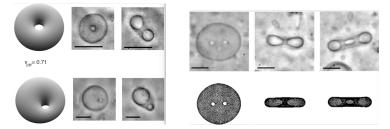
Not all red blood cells are biconcave disks



Model needs to be modified to incorporate various physical effects

Vesicles

- Small tenuous objects with bilayer membrane of surfactant molecules (e.g. phospholipids). Look like deformed bags (1 to 100 μm).
- Useful to study emulsions and micro-emulsions, mixtures used in human activity (cooking, painting, oil extraction, cosmetics, drug delivery, ...)
- Unlike red blood cells, vesicles may display **non-trivial topology**.

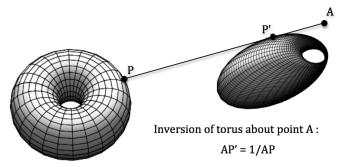


Introduction to the Willmore Functional

For a closed oriented surface Σ without boundary, the Willmore energy is

$$W(\Sigma) = \int_{\Sigma} H^2 dA$$

Willmore energy invariant under reparametrizations in domain and conformal transformations (translation, rotation, dilation, inversion) in target



Willmore energy appears in various areas of science

 cell biology : bending energy of elastic membranes (biomembranes, vesicles, smectic A-liquid crystals, ...)

- general relativity : approximates Hawking mass
- ▶ elasticity mechanics : nonlinear plate theory. Γ-limit 3d→2d
- string theory
- optical design
- conformal geometry

An Analogy

Let $\Gamma : [0,1] \to \mathbb{R}^3$ be a closed curve with curvature κ . Let the **total curvature**

$$w(\Gamma) := \int_0^1 \kappa(t) dt$$

Theorem [Fenchel, Borsuk]

$$w(\Gamma) \geq 2\pi$$

with equality if and only if curve is planar and convex.

Theorem [Milnor, Fàry]

lf

$$w(\Gamma) \leq 4\pi$$

then Γ is unknotted.

Theorem [Willmore, Pinkall]

Let $\boldsymbol{\Sigma}$ be an immersed closed surface. Then

 $W(\Sigma) \geq 4\pi$

and equality holds if and only if $\boldsymbol{\Sigma}$ is round sphere.

Theorem [Li-Yau]

Let $\boldsymbol{\Sigma}$ be an immersed closed surface. If

 $W(\Sigma) < 8\pi$

then Σ is embedded.

Willmore Surfaces

Critical points of the Willmore energy are called Willmore surfaces.

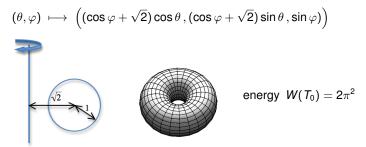
• minimal surfaces: H = 0 with W = 0

- CMC surfaces (i.e. H = cst) in general not Willmore
- composition of minimal immersion and conformal transformation
- ▶ The round sphere S².

Theorem [Bryant]

A compact Willmore surface of genus zero in \mathbb{R}^3 is inversion of complete minimal surface with finite total curvature and embedded planar ends.

The Willmore torus T_0 , projection onto \mathbb{R}^3 of Clifford torus :



Theorem [Marques-Neves]

Among all immersed tori in \mathbb{R}^3 , the Willmore torus is the one which minimizes the Willmore energy (up to isometries of \mathbb{S}^3).

$$W(\Sigma) := \int_{\Sigma} H^2 \, dA = \frac{1}{4} \int_{\Sigma} (\kappa_1 + \kappa_2)^2 = \frac{1}{4} \int_{\Sigma} \left[(\kappa_1 - \kappa_2)^2 + 4\kappa_1 \kappa_2 \right]$$

Gauss-Bonnet theorem : $\int_{\Sigma} \kappa_1 \kappa_2 \, dA = 2\pi \chi(\Sigma)$

$$\implies \qquad W(\Sigma) = \frac{1}{4} \int_{\Sigma} (\kappa_1 - \kappa_2)^2 dA + 2\pi \chi(\Sigma)$$

Willmore energy measures "sphericity"

Gauss equation : $4H^2 - 2\kappa_1\kappa_2 = |d\vec{n}|^2$

$$\implies \qquad W(\Sigma) = \frac{1}{4} \int_{\Sigma} |d\vec{n}|^2 dA + \pi \chi(\Sigma)$$

Willmore energy \simeq Dirichlet energy of Gauss map \vec{n}

Also: $2H\vec{n} = \Delta \vec{\Phi}$ (negative Laplace-Beltrami for induced metric)

$$\implies \qquad W(\Sigma) = \frac{1}{4} \int_{\Sigma} |\Delta \vec{\Phi}|^2 dA$$

Willmore energy \simeq biharmonic energy of immersion $\vec{\Phi}$

The Willmore Equation

Theorem [Shadow, Thomsen, Weiner]

A smooth immersion $\vec{\Phi}$ is Willmore if and only if

$$\Delta_g H + 2H(H^2 - K) = 0,$$

 $-\Delta_g$: Laplacian-Beltrami for induced metric.

What kind of questions might an analyst ask?

- meaning of solution (e.g. weak vs. strong)
- existence (e.g. with or without constraints, which constraints, ...)

- regularity, singularities, ...
- compactness

▶ ...

The Willmore Equation in Conservative Reformulation

Noether: an invariance in the energy gives rise to a conserved quantity.

Theorem [Rivière ('08), Y.B. ('14)]

- <u>Translation</u>: $\vec{T}^j := H \nabla^j \vec{n} \vec{n} \nabla^j H + H^2 \nabla^j \vec{\Phi}$ satisfies div $\vec{T}^j = \vec{0}$.
- <u>Rotation</u>: div $(\vec{T}^j \times \vec{\Phi} + H\vec{n} \times \nabla^j \vec{\Phi}) = \vec{0}$
- <u>Dilation</u>: $\operatorname{div}(\vec{T}^j \cdot \vec{\Phi}) = 0$

Last two divergence-free forms integrate to two potentials S and \vec{R} An unexpected pleasant surprise:

$$\begin{cases} -|g|^{1/2}\Delta_g S = \partial_{x_1}\vec{n}\cdot\partial_{x_2}\vec{R} - \partial_{x_2}\vec{n}\cdot\partial_{x_1}\vec{R} \\ -|g|^{1/2}\Delta_g\vec{R} = (\partial_{x_1}\vec{n}\times\partial_{x_2}\vec{R} - \partial_{x_2}\vec{n}\times\partial_{x_1}\vec{R}) + (\partial_{x_1}\vec{n}\partial_{x_2}S - \partial_{x_2}\vec{n}\partial_{x_1}S) \\ -|g|^{1/2}\Delta_g\vec{\Phi} = (\partial_{x_1}\vec{R}\times\partial_{x_2}\vec{\Phi} - \partial_{x_2}\vec{R}\times\partial_{x_1}\vec{\Phi}) + (\partial_{x_1}S\partial_{x_2}\vec{\Phi} - \partial_{x_2}S\partial_{x_1}\vec{\Phi}) \end{cases}$$

Theorem [Y.B., T. Rivière, Annals of Math. '14]

 Σ arbitrary closed 2-dim manifold. Modulo action of Möbius group of $\mathbb{R}^3,$ the space of Willmore surfaces satisfying

$$W(\Sigma) < 8\pi - \delta$$

is compact in the C^{ℓ} topology, $\forall \ell \in \mathbb{N}, \delta > 0$.

Proof relies heavily on Noether's theorem applied to invariances of Willmore energy:

Willmore equation is truly a 2×2 system rather than a 4th-order equation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Open Questions

- Willmore conjecture in higher codimension?
- Analogue of the Willmore conjecture for genus \geq 2.
- Understand the Seifert diagram rigorously
- Dynamical models
- Willmore-Plateau problem
- Replace the Willmore energy for surfaces by

 $\int_{\Sigma} |H|^p \quad \text{for } p\text{-dimensional } \Sigma$