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Martensitic transformations involve a change of shape of
the crystal lattice of some alloy at a critical temperature.

e.g. cubic to tetragonal

9 > HC . 3 9 < 0(}
cubic

: of martensite
austenite

three tetragonal variants

cubic to 0 < 0c
orthorhombic SiXx orthorhombic variants
(e.g. CuAlNi) of martensite 2
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Atomistically sharp interfaces for
cubic to tetragonal transformation
In NiMn 3 K.

Baele, van Tenderloo, Amelinckx



Energy minimization problem
for single crystal

¥

Reference configuration Deformed configuration

Minimize Io(y) = /Q »(Dy(z), 0) da

among y : Q — R3 subject to y|spn, = ¥, where
6 — temperature, and the free-energy density
v = P(A,0) is defined for

AeMPP ={Ae M¥3:detA>0}.



Energy-well structure

K(0) = {A € M3*3 that minimize (A4, 0)}

_|_

ASSU me / austenite

K(0) = «

[ a(6)SO(3) 0 > 0

SO(3) UUM , SO3)U;(0:) 6 = 0

\

UM, SO(3)U; () 0 < O,

alf.) =1 \

martensite

e.g. for cubic to tetragonal M = 3 and

Uy = diag (n2,711,m1), Uo = diag (n1,n2,11),

Uz = diag (n1,m1,m2).



Rank-one matrices and the Hadamard
jump condition

y piecewise affine N

Dy=B, z-N <k

A—B=a® N

Hadamard
jump condition



Theorem
Let U=U1 >0, V=V >0. Then SO3)U,
SO(3) V are rank-one connected iff

U2 —-V2=c¢(N® N+ N®N) (%)

for unit vectors N, N and some ¢ # O.
If N #= +N there are exactly two rank-one
connections between V and SO(3) U given by

RU=V4+a®N, RU=V4+a®N,
for suitable R, R € SO(3), a,a € R3.



Corollaries.

1. There are no rank-one connections between
matrices A, B belonging to the same energy
well.

Proof. In this case U = V, contradicting ¢ # O.

2. If U;,U; are distinct martensitic variants
then SO(3)U; and SO(3)U; are rank-one
connected if and only if det(U? _sz) = 0, and
the possible interface normals are orthogonal.
Variants separated by such interfaces are called
twins.

3. here IS a rank-one connection between
pairs of matrices A € SO(3) and B € SO(3)U;
if and only if U, has middle eigenvalue 1.




When a new phase is nucleated in such a phase
transformation, it has to fit geometrically onto
the parent phase. This is is both an important
ingredient for determining microstructure mor-
phology, and leads to metastability when the
two phases are geometrically incompatible.

e.g. austenite-martensite interfaces habit Vyp = 51

plane

m

v lnmdary layer
ve = Aoa+ (1= N)ég

(Classical) austenite-martensite interface in CuAINi Gives formulae of the crystallographic theory
(courtesy C-H Chu and R.D. James) of martensite (Wechsler, Lieberman, Read)




Two examples of incompatibility-
induced metastability

1. Special case of JB/James 2014 designed to
explain hysteresis in the bi-axial experiments
of Chu & James on CuAlINi single crystals, in
which a transformation occurs under load
between two martensitic variants.

W) -w(B) |, A

Consider the integral
I(y) = /Q W (Dy) dz, W(A) =(A,0)-T- A

where W : M3%3 5 R and W has two
local minimizers at A, B with rank(A—-B) > 1
and W(A) — W(B) > 0 sufficiently small.



Claim. Under suitable growth hypotheses on
W, y(x) = Ax 4+ c is a local minimizer of I in
L1(2;R3), i.e. there exists ¢ > 0 such that

I(y) =2 I(y) if Jqly —yldr <e.

Idea: since A and B are incompatible, if we
nucleate a region in which Dy(x) ~ B there
must be a transition layer in which the increase
of energy is greater than the decrease of energy
in the nucleus.

transition
layer

Dy~ B
Related work: Dy(x) = A
Kohn & Sternberg 1989,

Grabovsky & Mengesha 2009




2. Nucleation of austenite in martensite (JB/K. Koumatos/H. Seiner 2013,2014)

Single crystal of CuAINi. Pure variant of martensite. Heated by tip of soIde. !1













Proposed explanation. Nucleation is geomet-
rically impossible in the interior, on faces and
at edges, but not at a corner. We express this
by proving in a simplified model that if Us de-
notes the initial pure variant of martensite then
at Us the free-energy function is quasiconvex
(in the interior), quasiconvex at the boundary
faces, and quasiconvex at the edges, but not
at a corner.

To make the problem more tractable we as-
sume that v(A,0) := W(A) is infinite outside
the austenite and martensite energy wells.



Idealized model

10) = [[we)de= [ [ = (A,6)dvs(4)da,

where austenite

(5 Ac 30(3)/

w(A,0)=¢ 0  AcUS,SO(3)U;

\ +o00 otherwise \
and 6 > 0.

martensite
Oé-QI-’Y a7 q
So ¥(A,0) < oo on v = | er oty g | etc
0 0 &

6
K =S03)u ] SoB3)U; .
1=1
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Nucleation impossible in the interior, faces or edges

vy =0y, =
@ %00 Sz uppy,cK
S:suppr,cK

Theorem I(v) > I(éy,)
(quasiconvexity at Usg)

Vi =6Us

==--J S:suppv,cK




Nucleation possible at a corner

Vx =6Us

v,=0r ¥ =(1-2)6y +Adqy,

[(l/) < I((SUS)
I not quasiconvex at such a corner.

cf Grabovsky & Mengesha (2009), Campos

19
Cordero & Koumatos (2016)



Compatibility and microstructure morphology

1. Nonclassical austenite-martensite interfaces.

Classical interfaces.

habit;

m

undary layer

ve = M4+ (1= \)ép

(Classical) austenite-martensite interface in CuAINi
(courtesy C-H Chu and R.D. James)



But why should the martensitic microstructure This was investigated by
be a simple laminate, rather than something JB/C. Carstensen 1997.
more complicated, such as a double laminate?

nonclassical interface

Dy(x) =1

Dy(z) =F=v

Fe (UM, S03)U;) "

(unknown unless M = 2)
Up = U

supp v C qu,\i1 SO(3)U;
F=14+bm

double laminate
of martensite

21



AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
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Curved interface between crossing twins and austenite

resulting from the inhomogeneity of compound twinning.

(Optical microscopy,H. Seiner)

AUSTENITE

Theory
JB/K. Koumatos/H. Seiner
2010, 2014
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More complex interfaces.

Zn,cAus,Cu, ultra low hysteresis alloy
Song, Chen, Dabade, Shield, James, 2013

Quandt, Wuttig et al 2014

CuZnAl microstructure:
Michel Morin (INSA de Lyon)

T hese require generalizations of the Hadamard
jump condition, such as (JB/Carstensen):

T heorem

0 € [DyT (a)(1-N®N)]9~[Dy~ (a)(1-N@N)]9C.



Microstructure in polycrystals (JB/Carstensen)

General aim: to understand microstructure mor-
phology in polycrystals arising from martensitic

transformations, by taking seriously compati-

bility conditions both inside each grain and at

grain boundaries.

For this one needs:

(a) an appropriate mathematical model (e.g.
nonlinear elasticity with or without interfacial

energy)

(b) a description of the geometry of grains

(c) ways of applying compatibility at a grain
boundary when the microstructure on either
side may be complex



Description of grain geometry

Consider a polycrystal that occupies in a
reference configuration a bounded domain (open,
connected set) Q2 C R™ (n =2 or 3),

composed of a finite number of disjoint grains
4, 5=1,...,N, where each £2; is a bounded
domain, so that

N —
1=1



Interior grains are ones for which
0€2; C Uk 082k, and the others
are boundary grains.

A and B are interior grains
but touch 9f2.

The set of triple points is

T = U 89@1 M 891-2 M 89,,;3.
1<11<1o<i13<N

Theorem Suppose each grain Qj IS convex.
Then every interior grain is a convex polyhe-

dron (i.e. an intersection of a finite number of
open half-spaces).



Bounds on the set of triple points

We would like to prove that most points on
grain boundaries are not triple points. This is
impossible without further conditions on the
Qj because of the pathological example of the
Lakes of Wada (three bounded domains in the
plane having a common boundary).

(Wikipedia)

Theorem If n = 2 and each grain is the in-
terior of a closed Jordan curve, then there are
at most 2(N — 2) triple points.

29



The bound is sharp.

The case n = 3 iIs more complicated. One
such result is:

Theorem For n > 2, if each €; is a topologi-
cal manifold with boundary then 7' is nowhere
dense in U 09,



Two results using the nonlinear elasticity model
without interfacial energy.

In this model, at a constant temperature the
total free energy of the polycrystal in a defor-
mation y : 2 — R3 is given by

I(y) = | W(a, Vy(@)) da.

where W(xz, A) = lp(ARj) for x € Qj, v =1P(A)
IS the free-energy density corresponding to a
single crystal, and R; € SO(3).

Suppose we are at a temperature for which
the free-energy of the martensite (taken to be
zero) is less than that for the austenite. Then
v > 0 and

M
K={A:y(A)=0}= ] SO@3)U;.
1=1



Microstructures are described by gradient Young
measures v = (vz).cq, With corresponding en-

ergy
I(v)

/Q /M3><3 Wz, A)dvg(A) dx

M
j; /Qj /M3x3 Y(AR;) dve(A) dz.

(Here we assume that the grains have suffi-
ciently regular, e.g. Lipschitz, boundaries.)

Zero-energy microstructures thus correspond
to v such that suppvy C KR;-F for z € Q.



For cubic-to-tetragonal (more generally for cu-

bic austenite) a result of Bhattacharya on self-

accommodation implies that in the absence of

boundary conditions on 0€2 there is always a

Zero-energy microstructure with uniform macro-
scopic deformation gradient

_ 1
Dy = /M3><3 Advz(A) = Vy(z) = (detUy)31.

How complicated does v, have to be?



Cubic to tetragonal: K = (J?_, SO(3)U;, where

Uy = diag (n2,n1,1n1), Uz = diag (n1,n2,11),
Uz = diag (1,11, 12).

Theorem There is no homogeneous gradient
Young measure

4 4
v="> Nda, >0, N=1,
1=1 1=1

with 4; € K and v = (n7n2)1/31.

Arlt (1990).
Microstructure with
approximately four
gradients in BaTiOg3.




Zero-energy microstructures for a bicrystal

K =5S0(3)U; USO(3)Us

Grain 1
suppr, C K

Grain 2
supp vy C KR(«o)

- R(a)esz = e3
o = angle of rotation.

Always possible to have zero-energy
microstructure with Vy = o, = (n?n2)1/31 =



Question: Is it true that whatever the orien-
tation of the planar interface between the two
grains there must be a nontrivial microstruc-
ture in both grains?

Result 1. Whatever the orientation there al-
ways exists a zero-energy microstructure which
has a pure phase (i.e. vy = d4) in one of the
grains.

Now consider the case when the boundary be-
tween the two grains has the form S x (0, d),
where S is a smooth curve in the plane, so
that the normal at any point is of the form
(cos8,sin6,0).



Result 2. Suppose that a« = w/4. Then it is
Impossible to have a zero-energy microstruc-
ture with a pure phase in one of the grains
If the boundary between the grains contains a
normal with 8 € D1 and another normal with
0’ € D>, where

T 37 S5m0 7w Or 11w 137 157

= (5, S)UCE, U DU, =25

—TT T 37 b (7 97 117 137w




Proofs use:

1. A reduction to the case m = n = 2 using
the plane strain result for the two-well problem
(JB/James).

2. The characterization of the quasiconvex
hull of two wells (JB/James), which equals
their polyconvex hull.

3. Use of a generalized Hadamard jump con-
dition to show that there has to be a rank-one
connection b® N between the polyconvex hulls
for each grain.

4. Long and detailed calculations.



A probabilistic model for martensitic avalanches.

JB/P. Cesana/B. Hambly 2015
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General branching random walk analysis
(Cesana/Hambly) predicts approximate power
laws for plate lengths, as observed for acoustic
emissions.



