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Free energy

Configuration

Simulating disordered systems

@ Rugged free-energy landscapes

e Many valleys, separated by large energy barriers.
e The dynamics at low T is exceedingly slow.
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Introduction

Free energy

Configuration

Simulating disordered systems

@ Rugged free-energy landscapes
= long simulations to thermalise.

@ Statistical errors dominated by sample-to-sample fluctuations
— avoid overlong simulations and thermalise many samples

@ We need

e Fast computers & efficient algorithms to achieve thermalisation.
o A reliable method to choose the simulation length.

Monte Carlo Algorithms, Melbourne, 2010
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The Janus computer

@ Janus is a custom built computing system, made of FPGAs:

o Massively parallel @ Reconfigurable o Made of modules
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The Janus computer

@ Janus is a custom built computing system, made of FPGAs:
o Massively parallel @ Reconfigurable o Made of modules
@ We outperform conventional PCs by several orders of magnitude.

Conventional

computers i i
; p : : : :JANUS : : Exper;mentalltlmes :
10°% 10° 10* 103 102 10" 10 10 102 10°

Time (seconds)
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The parallel tempering algorithm

Free energy

Configuration

@ The same energy barriers that are difficult to cross at T4
are easy to overcome at To > Ty.
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The parallel tempering algorithm

Free energy

Configuration

@ The same energy barriers that are difficult to cross at T4
are easy to overcome at To > Ty.

@ Simulate N7 copies of the system at several temperatures.
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The parallel tempering algorithm

Free energy

Configuration
@ The same energy barriers that are difficult to cross at T4
are easy to overcome at T, > Tj.
@ Simulate N7 copies of the system at several temperatures.

@ Every Npt heat-bath steps, try to exchange configurations at
neighbouring temperatures with probability

p = min{1, exp[—(Bi+1 — 3i)(Eis1 — E)]}

@ The temperature of each copy performs a random walk in T space.

Monte Carlo Algorithms, Melbourne, 2010
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Our simulations

L Twn  Twax Nr  Npp o N

8 0.150 1575 10 5x10%® 8.30x 108
12 0414 1575 12 1x10” 1.53x 10"
16 0.479 1575 16 4x108 279 x 10"
24 0625 1600 28 1x10° 1.81x 10"
32 0.703 1574 34 4x10° 7.68 x 10"

v

The model and our parameters

o H: _Z<X,y> nyo'xa'y7 P(ny) :6("]3}’_ 1).
@ We thermalise L = 32 downto T = 0.703 ~ 0.64T..
@ 4000 samples for L < 24 and 1000 samples for L = 32.

@ Parallel tempering with sample-dependent simulation times.

@ Atotal of 1.1 x 10%° spin updates.
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Assessing thermalisation: autocorrelation times

Autocorrelation times

@ Robust thermalisation check — compute autocorrelation times 7:

Co(t) = ([0(0) = (O)][O(?) = (O)),  ro(t) = Co(t)/Co(0)
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Assessing thermalisation: autocorrelation times

Autocorrelation times

@ Robust thermalisation check — compute autocorrelation times 7:
Co(t) = ([0(0) — (O)N[O(t) = (O)]),  po(t) = Co(t)/Co(0)
=3+ Y pol)
t

po(t) = Ae™"/™er + 3" Ae=!/, (Texp > 71 : relaxation time)

1

@ This requires very long simulations
(orders of magnitude greater than 7).

@ OK for ordered systems.

@ Not practical for disordered systems
(the main source of error is sample-to-sample fluctuation).
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Assessing thermalisation in disordered systems

Traditional method

@ Study the time evolution of disorder averages in a logarithmic scale.

@ If the last few bins show no evolution, the system is thermalised.
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Assessing thermalisation in disordered systems
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@ Study the time evolution of disorder averages in a logarithmic scale.

@ If the last few bins show no evolution, the system is thermalised.

@ Problem: the thermalisation time is wildly sample dependent:
200

L =32, T,,=0.703
100 |

0
220 222 224 226 228 230 232 234 236

Texp

D. Yllanes (Univ. Complutense Madrid) Sample-dependent parallel tempering Monte Carlo Algorithms, Melbourne, 2010



Assessing thermalisation in disordered systems

Traditional method

@ Study the time evolution of disorder averages in a logarithmic scale.

@ If the last few bins show no evolution, the system is thermalised.

@ Problem: the thermalisation time is wildly sample dependent:
200

L =32, T,,=0.703 , o
It is not efficient (or safe!)

to use the same
simulation time for all samples.

100 -

0
220 222 224 226 228 230 232 234 236

Texp
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The temperature random walk
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The temperature random walk

@ The use of parallel tempering provides an alternative way of ensuring
thermalisation — use the dynamics of the temperature random walk.

6 - 1010 =
V/
4101 t /
2 V.
2101 t /
i — ‘ - o ‘ ‘
0 10! 2101 0 1011t 2101

@ All the configurations must cover the whole temperature range.
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The temperature random walk

@ The use of parallel tempering provides an alternative way of ensuring
thermalisation — use the dynamics of the temperature random walk.

10
p
101 ¢ '
/ 7
1010 t /
— ‘ o o ‘ ‘
0 1011t 2101 0 1011t 2101

@ All the configurations must cover the whole temperature range.
@ Samples with long thermalisation times will have long plateaux.
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The temperature random walk

@ The use of parallel tempering provides an alternative way of ensuring
thermalisation — use the dynamics of the temperature random walk.

10
V/
101 ¢ '
/ 7
1010 t /
— ‘ o o ‘ ‘
0 1011t 2101 0 1011t 2101

@ All the configurations must cover the whole temperature range.
@ Samples with long thermalisation times will have long plateaux.
@ We can quantify this idea to provide a robust thermalisation test.
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Quantifying the temperature random walk (I)

@ For each configuration we have a temperature index,
indicating its temperature at time ¢

i(tye {1,2,...,Nr}, Ti<h<..<T,<...<Tn,s
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Quantifying the temperature random walk (I)

@ For each configuration we have a temperature index,

indicating its temperature at time ¢
i(tye {1,2,...,Nr}, Ti<h<..<T,<...<Tn,s

We define a mapping f such that
Nr
f(i) changes signs at ir_, and only there Z f(ih=0
i=1

Temperatures symmetric with respect to 7. — choose linear f

We can now compute the autocorrelation of f, averaging over all
configurations and replicas — we do not need so long a run.

@ The integrated autocorrelation time is now easy to compute.

@ For critical-point studies 7int ~ Texp — USE Tint t0 assess thermalisation.

First used in L.A. Fernandez et al., PRE 80, 051105 (2009) (A.P. Young's talk).
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Quantifying the temperature random walk (ll)

@ At low temperatures, the correlation functions are more complicated:

1 1
S 01t 0.1
Q
[
0.0} 0.01
0 50 100

1

0.01F lpm ,

0 10000 20000
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Quantifying the temperature random walk (ll)

@ At low temperatures, the correlation functions are more complicated:

1 1
S 01t 0.1
Q
[
0.0} 0.01
0 50 100 0 1000 2doo
t

@ We parameterise C(t) ~

1

0.1 k|

0.01} E

0 10000 20000

Ae~!/7ee + Aje~1/7 and perform a double fit.
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Quantifying the temperature random walk (ll)

@ At low temperatures, the correlation functions are more complicated:

1 : : 1 1
S 01t , 0.1 0.1}
o
S i
|
0.01F 1 0.01} | .| | ql|r|’!||||‘|‘|| 0.01}
‘ ‘ ‘ "l”ﬁ"lln ‘
0 50 100 0 1000 2000 0 10000 20000
t

@ We parameterise C(t) ~ Ae~!/™» 4 Aje~!/™ and perform a double fit.

@ The fitting range is chosen automatically, based on 7.
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S 01t , 0.1} 0.1}
Q
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0 50 100 0 10000 20000

@ We parameterise C(t) ~ Ae~!/™» 4 Aje~!/™ and perform a double fit.
@ The fitting range is chosen automatically, based on 7.

@ Thermalisation protocol:
@ Simulate all samples for Nyin steps (enough to measure C(t)).
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Quantifying the temperature random walk (ll)

@ At low temperatures, the correlation functions are more complicated:

1 : : 1 1
S 01t , 0.1} 0.1}
Q
[
0.0} {1 o001t 0.01}
0 50 100 0 10000 20000

@ We parameterise C(t) ~ Ae~!/™» 4 Aje~!/™ and perform a double fit.
@ The fitting range is chosen automatically, based on 7.

@ Thermalisation protocol:

@ Simulate all samples for Nyin steps (enough to measure C(t)).
@ Compute 7 and extend the each run so that N > 127¢.

Monte Carlo Algorithms, Melbourne, 2010
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Thermalisation tests

@ Our simulations satisfy the traditional thermalisation tests:

" Nyg = N:?S
1.28 -
1.26
@
1.24 -
1.22
0 1 2 3 4
Bin

(Logarithmic bins: 0 = second half, 1 = second quarter, etc.)
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Thermalisation tests

@ Our simulations satisfy the traditional thermalisation tests:

—=— Ny variable
1281 e Nyg = N

1.26
@
1.24 -
122
0 1 2 3 4
Bin

(Logarithmic bins: 0 = second half, 1 = second quarter, etc.)

@ The increase in CPU time from the blue to the red curve is only 150%,
yet by correctly allocating it we obtain several stable logarithmic bins.
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Thermalisation tests

@ Our simulations satisfy the traditional thermalisation tests:

; ; 3
—=— Ny variable
L2BF e Ny = Mg
25f
126+
Q @
2 L
124+
L 15t 1
1.22 Trnin = 0.703 ——
. . . . . e Trnin = 0.984
0 1 2 3 4 ~ 08 1 12 1.4 1.6
Bin T

(Logarithmic bins: 0 = second half, 1 = second quarter, etc.)

@ The increase in CPU time from the blue to the red curve is only 150%,
yet by correctly allocating it we obtain several stable logarithmic bins.
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The probability distribution of the order parameter

@ Our order parameter is the
overlap q

25
_ 1 0@
|l ozh 9=y 2 %= ZU
o 016} X
3 sl
S - @ lIts pdf P(q) has peaks at +qea.
o I L=8 —— x
T [=12 ——
S %} L=16 —— x
T L[=24
05|/ L=32 oy |
L p— v ) 05 7
q
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The probability distribution of the order parameter

@ Our order parameter is the
overlap q
25 : : : 1 e
4 A st [h 9=y =y 2ol
o 0.16 |
3 15l 01 0 o1 |
E / ~ ? - m\ @ lts pdf P(qg) has peaks at +gea.
s 1 i b=12 — 7|l 1 @ There are several conflicting
g 05 j‘ ff 2421 / ﬁ\’ theoretical pictures for P(q) in the
| =3 \ thermodynamical limit:
0F* 55 0 05 1 Droplet P(g) = 5(qZs — 7).
q RSB Non-zero probability density
in gl < gea.
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The probability distribution of the order parameter

@ Our order parameter is the
overlap q
25 : : : 1 @
4 A st [h 9=y =y 2ol
o 0.16 |
3 15l 01 0 o1 |
E / ~ ? - m\ @ lIts pdf P(q) has peaks at +qea.
s 1 i b=12 — 7|l 1 @ There are several conflicting
g 05 j‘ ff 2421 / ﬁ\’ theoretical pictures for P(q) in the
| =3 \ thermodynamical limit:
0F* 55 0 05 1 Droplet P(g) = 5(qZs — 7).
q RSB Non-zero probability density
in|q| < gea-
@ qgea very difficult to compute.
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Clustering states and fixed-qg correlation functions

@ In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.
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Clustering states and fixed-qg correlation functions

@ In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.

@ We isolate clustering states by considering correlations at fixed g = ¢

é4(f'|C) _ <ZX qqu+r§(q - C)>

(0(g—0¢))
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Clustering states and fixed-qg correlation functions

@ In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.

@ We isolate clustering states by considering correlations at fixed g = ¢

(D_x 9xQx+r6(q — C€)) Gaussian C _ {2k Gxirexp[- V(g — ¢)?/2])
shlbuha — Cy(rlc) =
(6(g—c)) convolution V{exp[-V(q — c)2/2]>

@ We smooth the comb-like P(q) with a Gaussian convolution.
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Clustering states and fixed-qg correlation functions

@ In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.

@ We isolate clustering states by considering correlations at fixed g = ¢

(D_x 9xQx+r6(q — C€)) Gaussian C _ {2k Gxirexp[- V(g — ¢)?/2])
shlbuha — Cy(rlc) =
(6(g—c)) convolution V{exp[-V(q — c)2/2]>

@ We smooth the comb-like P(q) with a Gaussian convolution.
@ For T < T, and |g| < gea One expects

Aq

~g®L 9
C4(r|q) ~q + r0(q)
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Clustering states and fixed-qg correlation functions

@ In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.

@ We isolate clustering states by considering correlations at fixed g = ¢

(D4 xGx+r0(q — €))  Gaussian Ca(rlc) = (3", 9xax+r exp[—V(q — ¢)?/2])

(6(g—rc)) convolution V{exp[-V(q — C)2/2]>
@ We smooth the comb-like P(q) with a Gaussian convolution.

@ For T < T, and |g| < gea One expects

A
~ 2 q
C4(r|q) ~q + 9(q)
@ In real space, one has to perform a subtraction

that complicates the analysis.
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Correlations in Fourier space

@ We consider instead the Fourier transform of C4(r|q)
1

C4(k|q2 < qEA) X ke(q)_D + ... é4(k|q2 > qEA) X ﬁ
k2 + &,
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Correlations in Fourier space

@ We consider instead the Fourier transform of C4(r|q)

N . 1
2 2 6(q)—D 2 2

Ci(klg? < GEa) x K" D0 ... Cylklg® > GEa) o +£5°

@ We use the shorthand
Foq = Ca(Kkminlq) F{" = Ca(nKmin|q)
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Correlations in Fourier space

@ We consider instead the Fourier transform of C4(r|q)
; P 1
2 2 6(q)—D 2 2
Ci(klg? < GEa) x K" D0 ... Cylklg® > GEa) o +£5°
@ We use the shorthand

Fo = Ca(kninl) F§" = Ca(nkinlq)

@ Droplet and RSB disagree in the precise form of 6(q)
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@ For large L the crossover becomes a phase transition where
£ x (P — qéa) "
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Correlations in Fourier space

@ We consider instead the Fourier transform of C4(r|q)
Ca(k|G? < GBp) x KY@D=D = Cy(k|g? > GBp) x k24:5q2
@ We use the shorthand
Fa = Ca(Knmin|q) FY" = Ca(nkninlq)
@ Droplet and RSB disagree in the precise form of 6(q)
@ Yet, both theories agree that a crossover appears in F for finite L

Fg~LP=%@ for|ql<gea — Fg~1 for|g| > qGea
@ For large L the crossover becomes a phase transition where
£ x (P — qéa) "
(analogous to the study of the equation of state in Heisenberg ferromagnets).
@ From very general RG arguments we can derive a scaling law:

0(qea) = 2/0.
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The computation of gea (1)

@ According to Finite-Size Scaling,

Fc(yn) ~ LD—G(qEA)Gn(U/”(q — gea))
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The computation of gea (1)

@ According to Finite-Size Scaling,
Fc(yn) ~ LD—G(qEA)Gn(LUﬁ(q_ QEA))

@ We consider Fy/LY, with y < D — 6(0).

@ In the large-L limit, these quantities diverge for |g| < gea
but vanish for |q| > gea.
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The computation of gea (Il)

@ We consider pairs (L, 2L).

@ The crossing points g, scale as
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The computation of gea (Il)

@ We consider pairs (L, 2L).

@ The crossing points g, scale as
qry = Gea + ALV (%)

@ We can use this formula to
compute the value of gga.

@ For a given y, we have only three
crossings: (8,16), (12,24) (16,32).
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The computation of gea (Il)

@ We consider pairs (L, 2L).
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@ The crossing points g, , scale as
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compute the value of gga.

05 N @ For a given y, we have only three

{ crossings: (8,16), (12,24) (16,32).

e @ We perform a joint fit to (**) for
several values of y.
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The computation of gea (Il)

@ We consider pairs (L, 2L).

0.8
@ The crossing points g, , scale as

0.7

qLy = Gea + ALV (%)
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06 @ We can use this formula to
compute the value of gga.
05 E—— @ For a given y, we have only three
| { crossings: (8,16), (12,24) (16,32).
0 0.1 02 03 0.4
o @ We perform a joint fit to (**) for

several values of y.

@ Obviously, the intersections for
different y are correlated, but we
can control this by computing
their covariance matrix.
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The computation of gea (Il)

@ We consider pairs (L, 2L).

0.8
@ The crossing points g, ,, scale as

0.7

qry = Gea + ALV (%)

2)

T

NN
PrwhvkRoOOONO

06 @ We can use this formula to

compute the value of gga.

05 ~ 1 @ Foragiven y, we have only three
{ crossings: (8,16), (12,24) (16,32).

e @ We perform a joint fit to (**) for
several values of y.

R @ Obviously, the intersections for
Gea = 0.52(3), 1/0 = 0.39(5) J different y are correlated, but we
can control this by computing

their covariance matrix.
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@ We have shown how to assess thermalisation in parallel-tempering
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Conclusions

@ We have shown how to assess thermalisation in parallel-tempering
simulations and efficiently allocate CPU time.

@ We have studied the connected spatial correlation functions in the
low-temperature phase of the 3D Edwards-Anderson-Ising spin glass.

@ We use FSS arguments to provide the first reliable determination of gea
and of the exponent 1/7 that rules finite-size effects.

@ Other physical results:

@ We have established a time-length dictionary,
relating non-equilibrium and equilibrium.

e We conclude that RSB is the appropriate theoretical framework
for experimentally relevant length scales.
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