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Simulating disordered systems

Rugged free-energy landscapes

Statistical errors dominated by sample-to-sample fluctuations

=⇒ avoid overlong simulations and thermalise many samples

We need

Fast computers & efficient algorithms to achieve thermalisation.
A reliable method to choose the simulation length.
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The Janus computer

Janus is a custom built computing system, made of FPGAs:

Massively parallel Reconfigurable Made of modules

We outperform conventional PCs by several orders of magnitude.

Experimental timesJANUS

10
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The parallel tempering algorithm
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The same energy barriers that are difficult to cross at T1
are easy to overcome at T2 > T1.

Simulate NT copies of the system at several temperatures.

Every NPT heat-bath steps, try to exchange configurations at
neighbouring temperatures with probability

p = min{1, exp[−(βi+1 − βi)(Ei+1 − Ei)]}

The temperature of each copy performs a random walk in T space.
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Our simulations

L Tmin Tmax NT Nmin
MC Nmax

MC
8 0.150 1.575 10 5× 106 8.30× 108

12 0.414 1.575 12 1× 107 1.53× 1010

16 0.479 1.575 16 4× 108 2.79× 1011

24 0.625 1.600 28 1× 109 1.81× 1012

32 0.703 1.574 34 4× 109 7.68× 1011

The model and our parameters

H = −
∑
〈x,y〉 Jxyσxσy , P(Jxy ) = δ(J2

xy − 1).

We thermalise L = 32 down to T = 0.703 ' 0.64Tc.

4000 samples for L ≤ 24 and 1000 samples for L = 32.

Parallel tempering with sample-dependent simulation times.

A total of 1.1× 1020 spin updates.
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Assessing thermalisation: autocorrelation times

Autocorrelation times
Robust thermalisation check −→ compute autocorrelation times τ :

CO(t) = 〈[O(0)− 〈O〉][O(t)− 〈O〉]〉, ρO(t) = CO(t)/CO(0)

τint =
1
2

+
∑

t

ρO(t)

ρO(t) = Ae−t/τexp +
∑

i

Aie−t/τi , (τexp > τi : relaxation time)

This requires very long simulations
(orders of magnitude greater than τ ).

OK for ordered systems.

Not practical for disordered systems
(the main source of error is sample-to-sample fluctuation).
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Assessing thermalisation in disordered systems

Traditional method
Study the time evolution of disorder averages in a logarithmic scale.

If the last few bins show no evolution, the system is thermalised.

Problem: the thermalisation time is wildly sample dependent:
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τexp

L = 32, Tmin= 0.703

It is not efficient (or safe!)
to use the same
simulation time for all samples.
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The temperature random walk

The use of parallel tempering provides an alternative way of ensuring
thermalisation −→ use the dynamics of the temperature random walk.
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All the configurations must cover the whole temperature range.

Samples with long thermalisation times will have long plateaux.

We can quantify this idea to provide a robust thermalisation test.
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Quantifying the temperature random walk (I)

For each configuration we have a temperature index,
indicating its temperature at time t

i(t) ∈ {1,2, . . . ,NT}, T1 < T2 < . . . < Tc < . . . < TNT

We define a mapping f such that

f (i) changes signs at iTc , and only there
NT∑
i=1

f (i) = 0

Temperatures symmetric with respect to Tc −→ choose linear f

We can now compute the autocorrelation of f , averaging over all
configurations and replicas −→ we do not need so long a run.

The integrated autocorrelation time is now easy to compute.

For critical-point studies τint ' τexp −→ use τint to assess thermalisation.
First used in L.A. Fernandez et al., PRE 80, 051105 (2009) (A.P. Young’s talk).
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Quantifying the temperature random walk (II)

At low temperatures, the correlation functions are more complicated:
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We parameterise C(t) ' Ae−t/τexp + A1e−t/τ1 and perform a double fit.

The fitting range is chosen automatically, based on τint.

Thermalisation protocol:

1 Simulate all samples for Nmin steps (enough to measure C(t)).
2 Compute τexp and extend the each run so that N > 12τexp.
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Thermalisation tests

Our simulations satisfy the traditional thermalisation tests:
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yet by correctly allocating it we obtain several stable logarithmic bins.
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The probability distribution of the order parameter
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There are several conflicting
theoretical pictures for P(q) in the
thermodynamical limit:

Droplet P(q) = δ(q2
EA − q2).

RSB Non-zero probability density
in |q| < qEA.

qEA very difficult to compute.
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Clustering states and fixed-q correlation functions

In the RSB picture, the spin-glass phase is composed
of a multiplicity of clustering states.

We isolate clustering states by considering correlations at fixed q = c

We smooth the comb-like P(q) with a Gaussian convolution.

For T < Tc and |q| ≤ qEA one expects

C4(r |q) ' q2 +
Aq

rθ(q)

In real space, one has to perform a subtraction
that complicates the analysis.
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Correlations in Fourier space

We consider instead the Fourier transform of C4(r |q)

Ĉ4(k |q2 < q2
EA) ∝ kθ(q)−D + . . . Ĉ4(k |q2 > q2

EA) ∝ 1
k2 + ξ−2

q

We use the shorthand

Fq = Ĉ4(kmin|q) F (n)
q = Ĉ4(nkmin|q)

Droplet and RSB disagree in the precise form of θ(q)

Yet, both theories agree that a crossover appears in Fq for finite L

Fq ∼ LD−θ(q) for |q| < qEA −→ Fq ∼ 1 for |q| > qEA

For large L the crossover becomes a phase transition where

ξL=∞
q ∝ (q2 − q2

EA)−ν̂

(analogous to the study of the equation of state in Heisenberg ferromagnets).

From very general RG arguments we can derive a scaling law:

θ(qEA) = 2/ν̂.
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The computation of qEA (I)

According to Finite-Size Scaling,

F (n)
q ' LD−θ(qEA)Gn

(
L1/ν̂(q − qEA)

)

We consider Fq/Ly , with y < D − θ(0).

In the large-L limit, these quantities diverge for |q| < qEA
but vanish for |q| > qEA.
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The computation of qEA (II)

qEA = 0.52(3), 1/ν̂ = 0.39(5)

We consider pairs (L,2L).

The crossing points qL,y scale as

qL,y = qEA + Ay L1/ν̂ (**)

We can use this formula to
compute the value of qEA.

For a given y , we have only three
crossings: (8,16), (12,24) (16,32).

We perform a joint fit to (**) for
several values of y .

Obviously, the intersections for
different y are correlated, but we
can control this by computing
their covariance matrix.
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Conclusions

We have shown how to assess thermalisation in parallel-tempering
simulations and efficiently allocate CPU time.

We have studied the connected spatial correlation functions in the
low-temperature phase of the 3D Edwards-Anderson-Ising spin glass.

We use FSS arguments to provide the first reliable determination of qEA
and of the exponent 1/ν̂ that rules finite-size effects.

Other physical results:

We have established a time-length dictionary,
relating non-equilibrium and equilibrium.
We conclude that RSB is the appropriate theoretical framework
for experimentally relevant length scales.
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