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Critical slowing-down (a quick review)

• Near a critical point, spins have long-range correlations

• But . . . traditional MC algorithms make only local updates

=⇒ expect autocorrelation time τ to diverge at critical point

(critical slowing-down)

• Heuristic random-walk argument suggests τ ∼ ξ≈2

(i.e. dynamic critical exponent z ≈ 2)

• Truth is not far from this (e.g. z ≈ 2.13 for 2D Ising)

• Rayleigh quotient with trial vectorM2 gives rigorous lower bound

z ≥ γ/ν (i.e. τ ≥ const × χ)

• How to speed up the slow (long-distance) modes?

• Need collective-mode (nonlocal) updating

• But . . . need to offer the system the collective moves that it wants

• Example: When the long-distance modes are spin waves ,

multi-grid Monte Carlo (MGMC) works fairly well

(CSD is reduced from z ≈ 2 to z ≈ 0.5 – 0.7)

• This applies to continuous-spin models like nonlinear σ-models

• But what about discrete-spin models like Ising and Potts???
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Enter Swendsen and Wang (1987)

• Collective-mode algorithm for q-state Potts ferromagnet

H(σ) =
∑

〈ij〉

Jij (1 − δσi,σj
)

(σi = 1, 2, . . . , q; Jij ≥ 0)

• Based on Fortuin–Kasteleyn (1969) representation (reinterpreted)

• Partition function Z =
∑

{σ}

exp

[∑

〈ij〉

Jij (δσi,σj
− 1)

]

=
∑

{σ}

∏

〈ij〉

[(1 − pij) + pijδσi,σj
]

where pij = 1 − exp(−Jij)

• Now insert identity a + b =
1∑

n=0

[aδn,0 + bδn,1] on each bond 〈ij〉

=⇒ Z =
∑

{σ}

∑

{n}

∏

〈ij〉

[(1 − pij) δnij ,0 + pijδnij ,1δσi,σj
]

with auxiliary variables nij = 0, 1

(joint model of Potts spins σ and bond occupation variables n)

• Sum over σ at fixed n:

Z =
∑

{n}

(
∏

〈ij〉 : nij=1

pij

)(
∏

〈ij〉 : nij=0

(1 − pij)

)
qC(n)

where C(n) = # connected components (“clusters”)

(Fortuin–Kasteleyn random-cluster model)

Remark: q can now take arbitrary positive real values
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Recapitulating Fortuin–Kasteleyn . . .

• ZPotts = Zjoint = ZRC

• Marginal distribution of joint model on the Potts variables σ

(integrating out the n) gives the Potts model

• Marginal distribution of joint model on the bond variables n

(integrating out the σ) gives the random-cluster model

• Conditional distribution of n given σ is as follows:

Independently for each bond 〈ij〉, set nij = 0 if σi 6= σj,

and set nij = 0, 1 with probability 1 − pij, pij if σi = σj

• Conditional distribution of σ given n is as follows:

Independently for each connected component, set all spins σi to

the same value, chosen uniformly at random from {1, 2, . . . , q}

The Swendsen–Wang algorithm:

• Alternately apply the two conditional distributions!

• Each half-step can be carried out in time of order V

• Local move in one set of variables can have nonlocal effects

in the other =⇒ it’s a collective-mode algorithm!

(in which the collective modes are chosen by the system)
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Dynamic critical behavior of Swendsen–Wang (empirical)

• 2D Ising model at criticality (SW versus Metropolis):

Swendsen–Wang Metropolis
L χ τint,E τexp,M

4 12.183 ± 0.007 2.027 ± 0.010

8 41.396 ± 0.008 2.590 ± 0.004

16 139.584 ± 0.039 3.253 ± 0.008 285.6 ± 4.3

32 470.022 ± 0.140 4.012 ± 0.011 1258 ± 28

64 1581.319 ± 0.378 4.892 ± 0.011 5380 ± 140

128 5320.644 ± 1.680 5.875 ± 0.018 23950 ± 480

256 17899.581 ± 5.846 6.928 ± 0.022

512 60184.698 ± 18.670 8.107 ± 0.025

=⇒ τSW ∼ L≈0.22 (or maybe∼ log2 L) versus τMetropolis ∼ L≈2.13

• For q-state Potts model in dimension d:

Estimates of zSW

q = 1 q = 2 q = 3 q = 4

d = 1 0 0 0 0

d = 2 0 0.222 ± 0.007 0.514 ± 0.006 1 (× log??)

d = 3 0 0.46 ± 0.03 — —

d = 4 0 1 (× log??) — —

Warning: Error bars shown here are statistical errors only.

Systematic errors due to corrections to scaling may be much larger.
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Dynamic critical behavior of Swendsen–Wang:
What do we understand?

(Very little, alas.)

• q = 1 =⇒ τ = 0 =⇒ zSW = 0

• d = 1 (or when lattice is a tree) =⇒ bonds are independent,

τexp → −1/ log(1 − 1/q) < ∞ as β → +∞ =⇒ zSW = 0

• Non-rigorous (but probably rigorizable) argument gives zSW = 1

for Ising model on complete graph (Curie–Weiss mean-field model)

=⇒ suggests zSW = 1 also for Ising in d ≥ 4

• Rayleigh quotient with trial vector N (bond density) gives

rigorous lower bound (Li–A.S. 1989)

τexp & τint,E ≥ τint,N ≥ const × CH

and hence zSW ≥ α/ν (slowness of energy-like modes)

• Empirically this bound is close to sharp in d = 2

(it might even be sharp modulo a logarithm)

• But it is very far from sharp for Ising in d = 3, 4

=⇒ there is a slow mode we don’t understand!

Open problems concerning this unknown slow mode:

• Find Rayleigh trial vector giving different lower bound on zSW

• Find heuristic argument predicting zSW (even roughly)

in terms of static exponents

• Ossola–A.S. 2004 conjectured zSW ≥ β/ν and maybe even

zSW = max(α/ν, β/ν)
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It’s hard to understand SW dynamics based on 5 nontrivial data points!

(d = 2, q = 2, 3, 4 and d = 3, 4, q = 2)

Enter Chayes and Machta (1998)

• Collective-mode algorithm for FK random-cluster model with q ≥ 1

(q need not be an integer!)

• Reduces to a variant of SW when q is an integer

• Reverses SW auxiliary-variable idea:

– SW starts from Potts spin model, introduces auxiliary variables

nij = 0, 1 living on bonds

– CM starts from random-cluster model, introduces auxiliary

variables σi = 1, 2, . . . , k living on sites (k integer ≤ q)

• Provides natural interpolation of SW dynamics to noninteger q

(albeit only for q ≥ 1)

• Can study whole range 1 ≤ q ≤ qc(L) as a function of continuous q

[here qc(L) = maximum q for which the phase transition is

second-order on the lattice L]
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Chayes–Machta algorithm as reinterpreted by Deng et al. 2007

• Consider generalized random-cluster model

Z =
∑

{n}

(
∏

〈ij〉 : nij=1

pij

)(
∏

〈ij〉 : nij=0

(1 − pij)

)(
k∏

i=1

W (Hi)

)

where H1, . . . , Hk are the clusters and {W (H)} are nonnegative weights

(reduces to ordinary RC model if W (H) = q for all H)

• Fix an integer m ≥ 1

• Decompose each weight W (H) into m nonnegative pieces,

any way we like: W (H) =
m∑

α=1
Wα(H)

• First half-step of generalized CM algorithm:

Given bond configuration n, choose independently for each cluster Hi

a “color” α ∈ {1, . . . , m} with probabilities Wα(Hi)/W (Hi);

assign this color to all sites in Hi.

• Fact: Subgraph consisting of sites colored α is a generalized RC model

with weights {Wα(H)}

• Now update these generalized RC models with any valid MC algorithm

– One valid update is “do nothing” (inactive colors)

– Must include at least one nontrivial update

– Idea: Have at least one α for which {Wα(H)} is easy to simulate

– Example: If W (H) = q for all H, with q ≥ 1, can take

Wα(H) = 1 for one or more colors α (active colors):

independent bond percolation is trivial to update!

– If q is integer and we make all colors active, recover standard SW
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Dynamic critical behavior of S–W–C–M (empirical)

Dimension d = 2

q zint,E ′ α/ν β/ν

1.00 0 −0.5000 0.1042

1.25 0 −0.3553 0.1112

1.50 0 −0.2266 0.1168

1.75 0.06(1) −0.1093 0.1213

2.00 0.14(1) 0 (log) 0.1250

2.25 0.24(1) 0.1036 0.1280

2.50 0.31(1) 0.2036 0.1303

2.75 0.40(2) 0.3017 0.1321

3.00 0.49(1) 0.4000 0.1333

3.25 0.57(1) 0.5013 0.1339

3.50 0.69(1) 0.6101 0.1338

3.75 0.78(1) 0.7376 0.1324

4.00 0.93(2) 1.0000 0.1250

Dimension d = 3

q zint,E ′ α/ν β/ν

1 0 −0.710(2) 0.4774(1)

1.5 0.13(1) −0.32(4) 0.500(4)

1.8 0.29(1) −0.15(5) 0.5117(6)

2 0.46(3) 0.174(1) 0.5184(1)

2.2 0.76(1) 0.50(4) 0.508(4)

• Ossola–A.S. conjecture z ≥ β/ν is definitely false (see boldface)

• zSWCM very close to α/ν in d = 2 for all q

• zSWCM ≫ α/ν in d = 3 for all q — but we still don’t understand why !
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Sweeny (1983) local algorithm for the random-cluster model

• Single-bond-update dynamics for FK random-cluster model with q > 0

(q need not be an integer, nor need it be ≥ 1!)

• Choose a bond b at random, erase its current occupation state,

and give it a new occupation state according to the conditional

distribution of the RC model with the other bonds held fixed

• In other words: Occupy it with probability v/(1+v) [resp. v/(q + v)]

in case the endpoints of b are (resp. are not) already connected by

a path of occupied bonds not using b [here v = eJ − 1 = p/(1 − p)]

• Requires nonlocal connectivity check at each bond update

=⇒ nontrivial computational issues (dynamic connectivity algorithms)

• Rayleigh quotient with trial vector N (bond density) gives

rigorous lower bound

τexp & τint,N ≥ const × CH

and hence z ≥ α/ν (where time is measured in “sweeps”)

• Analogous to z ≥ γ/ν for single-spin-update algorithms

. . . but CH diverges much more slowly than χ

=⇒ this local algorithm may not be so bad after all!

• Numerical results in d = 2, 3:

– zexp ≈ zint,N only slightly larger than lower bound α/ν,

and conceivably equal to it

– Exponents slightly smaller than those found for

Chayes–Machta–Swendsen–Wang!

=⇒ Sweeny algorithm extremely efficient (despite being local)

provided that computational difficulties can be overcome
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Surprise in the Sweeny algorithm: Critical speeding-up!

• Critical slowing-down (well known):

Slowest mode exhibits τexp ∼ ξzexp with zexp > 0

• Critical speeding-up (quite unexpected):

Some observables O exhibit strong decorrelation

on time scales much less than one sweep

=⇒ can even have zint,O < 0!

• Example: O = S2 =
∑

|C|2 in the Sweeny algorithm

– FK clusters are fractals

– A large cluster can sometimes be broken into two large pieces

by one or a few bond deletions

– Two large clusters can sometimes be joined by one or a few

bond insertions

– Not surprising that a “global” observable like S2 could exhibit

significant decorrelation in a time much less than one sweep,

i.e. of order Lw “hits” with w < d

(We will later make this reasoning quantitative)

– Crucial that we update bonds randomly rather than by sweeps
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Critical speeding-up for O = S2 in the Sweeny dynamics

• d = 2 random-cluster model at criticality (here q = 0.2)

• Time t measured in “hits” of a single bond

• Autocorrelation function ρS2
(t) plotted versus t/L2 for varying L

• Autocorrelation function ρN (t) shown for comparison

(here all values of L collapse onto a single curve)
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• Two time scales:

– Fast decay in time much less than a single sweep

(i.e. of order Lw for some w < d)

– Ultimate exponential decay e−t/τexp with τexp ∼ Ld+zexp
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Same data plotted versus rescaled time

• Plot ρS2
(t) versus t/Lw

• Adjust the exponent w until all the points fall on a scaling curve

ρS2
(t) = f(t/Lw) in the limit L → ∞

• E.g. we find w ≈ 0.99 for q = 0.2

• Scaling function f is very close to f(x) = (1 + ax)−r
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Sweeny algorithm: Critical exponents versus q

Dimension d = 2

q zexp α/ν w r zint,S2
dred dF

0.0005 0 −1.9576 0.77 4.83 −1.23 1.2376 1.9965

0.005 0 −1.8679 0.79 4.18 −1.21 1.2111 1.9891

0.05 0 −1.6005 0.88 2.84 −1.12 1.1299 1.9679

0.2 0 −1.2467 0.99 1.42 −1.01 1.0168 1.9417

0.5 0 −0.8778 1.11 0.80 −0.71 0.8904 1.9172

1.0 0 −0.5000 1.26 0.43 −0.32 0.7500 1.8958

1.5 0 −0.2266 1.36 0.25 −0.16 0.6398 1.8832

2.0 0 (log) 0 (log) 1.49 0.15 −0.08 0.5417 1.8750

2.5 0.26(1) 0.2036 1.64 0.10 0.20 0.4474 1.8697

3.0 0.45(1) 0.4000 1.84 0.06 0.41 0.3500 1.8667

3.5 0.636(2) 0.6101 2.04 0.04 0.61 0.2375 1.8662

Dimension d = 3

q zexp α/ν w r zint,S2
dred dF

0 0 −1.44(5) 1.52 1.04 −1.48 ? 2.5838(5)

1 0 −0.713(1) 1.87 0.32 −0.36 1.1437(6) 2.5219(2)

2 0.35(1) 0.174(2) 2.55 0.08 0.29 0.757(2) 2.4816(1)

• Note that zint,S2
< 0 for q . 2!

• Critical speeding-up is strongest for small q

• This is when clusters are most fragile,

i.e. red-bond fractal dimension dred is largest

(Red bonds are those whose removal disconnects the infinite cluster

into two infinite pieces)
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Scaling argument predicting critical speeding-up

• Conjecture that decorrelation of S2 is caused principally by

hitting a few (order 1) red bonds =⇒ predicts w = d − dred

• Prediction verified when zexp = 0

• Deviations (not yet understood) occur when zexp > 0

• We lack (at present) any theory for the other exponent r

Summary of Sweeny algorithm

• Despite being local , Sweeny algorithm is unexpectedly efficient

• For 0 < q < 1 it is the only known algorithm

• For q . 2 efficiency is enhanced by strong critical speeding-up

• Even for larger q, it is a potential competitor to Chayes–Machta

if efficient connectivity-checking algorithms can be found
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Let’s step back and take stock . . .

• Local updates for spin models lead to critical slowing-down

• A general idea for overcoming critical slowing-down:

– Replace the underlying spins by an alternate representation,

obtained from the original model by algebraic transformation

– Local moves in the new variables may have nonlocal effects

in the original variables

• Swendsen–Wang is of this kind (uses joint Potts–FK representation)

• Even Sweeny is of this kind (local move in FK bond representation

has nonlocal effects when reinterpreted for spins)

Can we invent other algorithms of this type?

• One well-known alternate representation of spin models is the

high-temperature expansion

• Consider high-temperature graphs as a statistical-mechanical model

in their own right [works when weights are nonnegative]

• But not so obvious how to update “vacuum” graphs alone

• Clever idea (Prokof’ev and Svistunov 2001):

Update “vacuum” and “two-point-function” graphs together

=⇒ worm algorithm

(see also Jerrum and Sinclair 1993 for a closely related idea)
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High-temperature expansion of ferromagnetic Ising model
(a quick review)

• Consider ferromagnetic Ising model on graph G = (V, E)

with nearest-neighbor coupling J > 0 and zero magnetic field

• High-temperature graphs are subsets A ⊆ E of “occupied bonds”

• Write ∂A for the set of vertices that touch an odd number of

bonds of A (boundary mod 2)

• Vacuum graphs are S∅ = {A : ∂A = ∅}

• Two-point-function graphs are Sx,y = {A : ∂A = {x, y}}
(Use convention Sx,x = S∅)

• High-temperature expansion then states that

Z =
∑

A∈S∅

w|A|

ZG(x, y) =
∑

A∈Sx,y

w|A|

where G(x, y) = 〈σxσy〉 and w = tanh J

• This expansion can be interpreted probabilistically if w > 0
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Worm algorithm as reinterpreted by Deng et al. 2007

• Configuration space S of worm algorithm consists of

ordered triplets (A, x, y) with x, y ∈ V and A ∈ Sx,y

• Weight of configuration (A, x, y) is w|A|

• Elementary move of worm algorithm:

– Pick uniformly at random one of the two “endpoints” (say, x)

and one of the edges emanating from x (say, e = xx′)

– Propose to move from the current configuration (A, x, y)

to the new configuration (A△e, x′, y), where △ denotes

symmetric difference

(i.e. delete the bond e if it is present, or insert it if it is absent)

– Accept or reject this move according to Metropolis or

heat-bath criterion

• Optional additional move: Whenever we reach x = y,

move endpoints from (x, x) to randomly chosen (x′, x′)

• Some observables of interest in this unusual ensemble:

– Number of occupied bonds N = |A|

– Short-distance observableD0 = δx−y,0 measuring returns to x = y

=⇒ estimate susceptibility by 〈D0〉 = 1/χ

– Low-momentum observable Fp = eip·(x−y) for |p| = 2π/L

=⇒ estimate correlation length using 〈Fp〉 = G̃(p)/χ
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Dynamic critical behavior of worm algorithm (theory)

• Measure time t in “hits” of a single bond

(but natural unit of time is one “sweep” = Ld hits)

• Bond density N : Rayleigh–Ritz argument gives

τint,N ≥ const × Ld+α/ν in “hits”, i.e. zint,N ≥ α/ν

[this will be slowest mode]

• Short-distance observable D0 = δx−y,0:

– Assume perfect equilibration of bonds A for the

given endpoints x, y

– Then z = x − y performs a random walk with drift,

with equilibrium distribution G(z)/χ

– Fokker–Planck analysis predicts ρD0
(t) ∼ t−(1−η/2)

in the limit L → ∞

– Actual decay might be slower because bonds are not

perfectly equilibrated.

• But D0 estimates χ via a “rare” event,

i.e. binomial random variable with probability 1/χ

So ∼ χ samples needed to get relative variance of order 1

(“statistical inefficiency due to large static variance”)

19



Dynamic critical behavior of worm algorithm (empirical)

• d = 2 Ising model at criticality

• Bond density N : Decay of ρN (t) is nearly pure exponential,

fit τint,N ∼ Ld+z yields zexp = zint,N ≈ 0.34 (> α/ν)

• Short-distance observable D0 shows significant decorrelation on

time scale of order 1 (in “hits”):
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• Short-time behavior is ρD0
(t) ∼ t−s with s ≈ 0.75

(perfect equilibration of bonds predicted s = 1 − η/2 = 7/8)
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Dynamic critical behavior of worm algorithm (continued)

• Worm algorithm exhibits two-time-scale behavior (like Sweeny):

– Initial decay ρD0
(t) ∼ t−s on time scale of order 1

– Ultimate exponential decay e−t/τexp with τexp ∼ Ld+zexp

• Crossover scaling Ansatz yields zint,D0
= −sd + (1 − s)zexp

• With zexp ≈ 0.34 and s ≈ 0.75, this gives zint,D0
≈ −1.42

• Behavior in d = 3 is similar, but now:

– zexp = zint,N appears to be equal to α/ν ≈ 0.174

– Short-time behavior is ρD0
(t) ∼ t−s with s ≈ 0.66

(perfect equilibration of bonds predicted s = 1−η/2 ≈ 0.98)

– Crossover scaling Ansatz yields zint,D0
≈ −1.92

• Practical efficiency for estimating χ:

– Multiply τint,D0
∼ Lzint,D0 by factor χ ∼ Lγ/ν due to static variance

– Yields “effective dynamic critical exponent” zeff,D0
= zint,D0

+ γ/ν

– We find zeff ,D0
≈ 0.33 in d = 2, zeff ,D0

≈ 0.04 in d = 3

– Compare to Swendsen–Wang:

zSW ≈ 0.14 – 0.22 in d = 2, zSW ≈ 0.46

– Worm is slightly worse than SW in d = 2,

significantly better in d = 3

• Results for estimating ξ using Fp are similar
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Dynamic critical behavior of worm algorithm (continued)

• Conclusion:

– Worm algorithm is best currently available algorithm for

estimating χ and ξ in 3D Ising

– In practice, worm outperforms SW when L & 32, at a rate

growing like L≈0.32

• Two-time-scale (or even three-time-scale) dynamics needs further

elucidation: Can we explain the dynamic critical exponents?

• “Worm” idea is a general principle that is widely applicable

• Recent developments:

– Wolff 2009 combines variant of worm algorithm with Aizenman

random-current identity to study connected 4-point function

– Zhang–Garoni–Deng 2009 devise worm algorithm for

fully-packed loop model on hexagonal lattice

(⇐⇒ T = 0 triangular-lattice Ising antiferromagnet)
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