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Why? It’s just easiest to use your own algorithm

The flatPERM algorithm (and some pedagogical applications):
T. Prellberg and J. Krawczyk, “Flat histogram version of the pruned and enriched Rosenbluth method,” Phys. Rev.
Lett. 92 (2004) 120602
T. Prellberg, J. Krawczyk, and A. Rechnitzer, “Polymer simulations with a flat histogram stochastic growth algorithm,”
Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Bulk vs surface:
J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “Stretching of a chain polymer adsorbed at a surface,”
Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Layering transitions for adsorbing polymers in poor
solvents,” Europhys. Lett. 70 (2005) 726-732
J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Pulling absorbing and collapsing polymers off a
surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008
A. L. Owczarek, A. Rechnitzer, J. Krawczyk, and T. Prellberg, On the location of the surface-attached globule phase in
collapsing polymers, J. Phys. A 40 (2007) 13257-13267

Hydrogen-bond type interactions:
J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, A Lattice Model for Parallel and Orthogonal Beta-Sheets
using Hydrogen-Like Bonding, Phys. Rev. E 76 (2007) 051904
J. Krawczyk, A. L. Owczarek, and T. Prellberg, The competition of hydrogen-like and isotropic interactions in polymer
collapse, Journal of Statistical Mechanics: theory and experiment, JSTAT (2007) P09016
J. Krawczyk, A. L. Owczarek, and T. Prellberg, “Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice
polymers,” Physica A 388 (2009) 104
J. Krawczyk, A. L. Owczarek, and T. Prellberg, “‘A Semi-flexible attracting-segment model of two-dimensional polymer
collapse,” Physica A 389 (2010) 1619

Alternative lattice models:
J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “On a type of self-avoiding random walk with multiple
site weightings and restrictions,” Phys. Rev. Lett. 96 (2006) 240603
A. L. Owczarek and T. Prellberg, “Collapse transition of self-avoiding trails on the square lattice,” Physica A 373 (2007)
433-438
J. Doukas, A. L. Owczarek and T. Prellberg, “Identification of a polymer growth process with an equilibrium
multi-critical collapse phase transition: the meeting point of swollen, collapsed and crystalline polymers,” submitted to
Phys. Rev. E
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Putting Things into Perspective

As of July 25th,

PERM (1997): 245 citations

nPERM (2003): 65 citations

Multicanonical PERM (2003): 45 citations

flatPERM (2004): 34 citations

GARM/flatGARM (2008): 3 citations

GAS/flatGAS (2009): 1 citation

This should be compared with e.g.

Umbrella Sampling (1977): 994 citations

Multicanonical Sampling (1992): 751 citations

Wang-Landau Sampling (2001): 693 citations
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Interacting Self-Avoiding Walk (ISAW)

Physical space → simple cubic lattice Z3

Polymer → self-avoiding N-step random walk (SAW) ϕ

Quality of solvent → short-range interaction ε, Energy
EN (ϕ) = m(ϕ)ε

Partition function:
ZN (β) =

∑
m

CN,me
−βmε

CN,m is the number of SAWs
with N steps and m interactions

Thermodynamic Limit for a dilute solution:

V =∞ and N →∞
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Extensions of the Model

In addition to

polymer and solvent
modelling
(bulk interaction)

add

protein-like structure
(HP interactions)
adsorption
(surface interaction)
micromechanical
deformations
e.g. force on chain end
(optical tweezers)

adsorbed monomerroot monomer

force

nn-interaction

Complete description through high-dimensional density of states:
(a) bulk and (b) surface interactions, (c) positions of chain end

Thomas Prellberg PERM and all that
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Rosenbluth versus Simple Sampling

Simple Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the neighbouring sites uniformly at random

If occupied, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

Rosenbluth Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the unoccupied neighbouring sites uniformly at random

If there is none, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

MN Rosenbluth and AW Rosenbluth, J Chem Phys 23 (1955) 356

JM Hammersley J M and KW Morton, J R Stat Soc B 16 (1954) 23

(Augment with Importance Sampling for ISAW)

Thomas Prellberg PERM and all that



Introduction
The ‘Old’ Algorithms

The ‘New’ Algorithms
Conclusion

Rosenbluth2

PERM
Multicanonical PERM
FlatPERM

Rosenbluth versus Simple Sampling

Simple Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the neighbouring sites uniformly at random

If occupied, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

Rosenbluth Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the unoccupied neighbouring sites uniformly at random

If there is none, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

MN Rosenbluth and AW Rosenbluth, J Chem Phys 23 (1955) 356

JM Hammersley J M and KW Morton, J R Stat Soc B 16 (1954) 23

(Augment with Importance Sampling for ISAW)

Thomas Prellberg PERM and all that



Introduction
The ‘Old’ Algorithms

The ‘New’ Algorithms
Conclusion

Rosenbluth2

PERM
Multicanonical PERM
FlatPERM

Rosenbluth versus Simple Sampling

Simple Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the neighbouring sites uniformly at random

If occupied, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

Rosenbluth Sampling (for SAW)

Choose starting vertex at the origin

Draw one of the unoccupied neighbouring sites uniformly at random

If there is none, reject entire walk and start again

If unoccupied, accept and repeat (up to some maximal walk length)

MN Rosenbluth and AW Rosenbluth, J Chem Phys 23 (1955) 356

JM Hammersley J M and KW Morton, J R Stat Soc B 16 (1954) 23

(Augment with Importance Sampling for ISAW)

Thomas Prellberg PERM and all that



Introduction
The ‘Old’ Algorithms

The ‘New’ Algorithms
Conclusion

Rosenbluth2

PERM
Multicanonical PERM
FlatPERM

Rosenbluth versus Simple Sampling

Simple Sampling

Large attrition, so very inefficient

Uniform, independent samples

Rosenbluth Sampling

Less attrition (but still exponential)

Non-uniform sampling

1/2 1 trapped1/3

At step k, ak possibilities with probability pk = 1/ak

An N-step walk ϕ has weight

W (ϕ) ∝
∏
k<N

ak (ϕ)

Walks with large weights dominate ensemble

Thomas Prellberg PERM and all that
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PERM: “Go with the Winners”

PERM = Pruned and Enriched Rosenbluth Method
P Grassberger, Phys Rev E 56 (1997) 3682

Modify Rosenbluth Sampling by controlling the weights
Wβ(ϕ) = W (ϕ)e−βE(ϕ)

1 Combat large weights by Enrichment:
Weight Wβ(ϕ) too large ⇒ make copies of the walk

2 Combat small weights by Pruning:
Weight Wβ(ϕ) too small ⇒ remove walks occasionally

Parameters: upper thresholds TN and tN , pruning probability q

Adapt TN and tN during simulation, keep TN/tN roughly constant

nPERM = New PERM
HP Hsu et al, Phys Rev E 68 (2003) 021113

Significant improvement: when enriching, force distinct copies

(Augment with Importance Sampling: nPERMis)

Thomas Prellberg PERM and all that
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Multicanonical PERM

Sample the density of states with respect to an umbrella density
GM Torrie and JP Valleau J Comput Phys 23 (1977) 187

For uniform sampling of the density of states CN,m, we need to use
weights

Wflat(ϕ) = W (ϕ)/CN,m

As CN,m is unknown, compute iteratively an approximation C approx
N,m

and perform a final run with

W approx
flat (ϕ) = W (ϕ)/C approx

N,m

(Multicanonical Method) BA Berg and T Neuhaus, Phys Lett B 267 (1991) 249

The resulting algorithm is called multicanonical PERM
M Bachmann and W Janke, PRL 91 (2003) 208105

Thomas Prellberg PERM and all that
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Revisit PERM

Exact enumeration: choose all a continuations with weight 1

Rosenbluth sampling: chose one continuation with weight a

View Rosenbluth Sampling as approximate enumeration

If an N step walk ϕ gets assigned a weight W (ϕ) =
∏

k<N ak (ϕ)
then S walks with weights W (ϕi ) give an estimate

C est
N = 〈W 〉N =

1

S

∑
i

W (ϕi )

Add pruning/enrichment with respect to the ratio

r = W (ϕ)/〈W 〉N
1 If r > 1, make c = min(brc, aN ) distinct copies and update

W (ϕ)←W (ϕ)/c

2 If r < 1, prune with probability 1− r and update

W (ϕ)←W (ϕ)/r

Thomas Prellberg PERM and all that
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From PERM to flatPERM

An important observation:

Number of samples generated for each N is roughly constant

We have a flat histogram algorithm in system size

flatPERM = flat histogram PERM T Prellberg and J Krawczyk, PRL 92 (2004) 120602

PERM: estimate number of walks CN

C est
N = 〈W 〉N

r = W (ϕ)/C est
N

PERM at finite temperature: estimate partition function ZN (β)

Z est
N (β) = 〈W exp(−βE)〉N

r = W (ϕ) exp(−βE(ϕ))/Z est
N (β)

flatPERM: estimate density of states CN,~m

C est
N,~m = 〈W 〉N,~m

r = W (ϕ)/C est
N,~m

Parameter-free implementation

Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

flatPERM starts with poor estimates of the average weights 〈W 〉
To stabilise algorithm (avoid initial overflow/underflow):
delay growth of large configurations by increasing lengths gradually

Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 1, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 10, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 20, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 30, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 40, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 50, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 60, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 70, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 80, 000, 000
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Thomas Prellberg PERM and all that
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 100, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 110, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 120, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 130, 000, 000
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Total sample size: 140, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 150, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 160, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 170, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 180, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 190, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 200, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 210, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 220, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 230, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 240, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 260, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 270, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 280, 000, 000
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Example: 2dim ISAW simulation up to N = 1024

Total sample size: 290, 000, 000
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Example: 2dim ISAW simulation up to N = 1024
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ISAW simulations

2dim ISAW density of states T Prellberg and J Krawczyk, PRL 92 (2004) 120602
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One simulation suffices

400 orders of magnitude
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Outline

1 Introduction
A Zoology of Growth Algorithms
Which Algorithm is Best?
ISAW - the canonical lattice model

2 The ‘Old’ Algorithms
Rosenbluth2

PERM
Multicanonical PERM
FlatPERM

3 The ‘New’ Algorithms
New Ideas
GARM
GAS

4 Conclusion
Outlook
Thanks

Thomas Prellberg PERM and all that
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Revisit Rosenbluth Sampling

Each configuration grown uniquely by appending edges to endpoint

Generating tree

Each node of tree is a configuration
Sample by growing unique “sample path” down the tree
The weight of sample path is W (ϕ) =

∏
k<N ak (ϕ)
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From Generating Trees to Generating Graphs

Unique way to construct walks

No obvious unique way to construct polygons
Can we generalize from generating trees?

Generating graph

Each node of graph is a configuration
Sample by growing non-unique path down the graph
The weight of the sample path is W (ϕ)6=

∏
k<N ak (ϕ)
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Atmospheres

Positive and negative atmospheres of the configuration

Let a+ be the number of ways a configuration can grow
Let a− be the number of ways a configuration can shrink

Generating tree: bijection between sample paths and configurations

Rosenbluth Sampling (with a− = 1)

The weight W (ϕ) and probability Pr(ϕ) of a sample path ϕ are

W (ϕ) =
∏
k<N

a+
k (ϕ) Pr(ϕ) = 1/W (ϕ)

This implies ∑
ϕ

W (ϕ) Pr(ϕ) =
∑
ϕ

1 = CN
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From Rosenbluth Sampling to GARM

Generating tree: bijection between sample paths and configurations

W (ϕ) =
∏
k<N

a+
k (ϕ)

∑
ϕ

W (ϕ) Pr(ϕ) = CN

Generating graph: many sample paths give the same configuration

W (ϕ) =
∏
k<N

a+
k (ϕ)

∑
ϕ

W (ϕ) Pr(ϕ)� CN

The correct weight EJJ van Rensburg and A Rechnitzer, J Phys A 41 (2008) 442002

W (ϕ) =
∏
k<N

a+
k (ϕ)

a−k (ϕ)

∑
ϕ

W (ϕ) Pr(ϕ) = CN

GARM = Generalized Atmospheric Rosenbluth Method
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GARM is a genuine generalization of Rosenbluth sampling

Can easily substitute GARM for Rosenbluth sampling

Thermal GARM
Pruned Enriched GARM
Multicanonical GARM (not done yet!)
Flat Histogram GARM

Applicable to polygons, branched polymers, lattice animals, . . .

Drawback: atmospheres may be expensive to calculate

Important Extension

Can include conventional canonical Monte Carlo moves

Need to know a0, the atmosphere of neutral moves

Good ideas are welcome!
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GARM works for 2d polygons, but not 3d polygons

There are 3 minimal 3d unknots on Z3 and 3328 minimal trefoils
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Use moves that grow and shrink
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GARM works for 2d polygons, but not 3d polygons

There are 3 minimal 3d unknots on Z3 and 3328 minimal trefoils
cannot reach one minimal configuration from another by growing

Use moves that grow and shrink

Moves from the BFACF algorithm B Berg and D Foester, Phys Lett B 106 (1981) 323

C Aragão de Carvalho, S Caracciolo and J Fröhlich, Nucl Phys B 215 (1983) 209

Ergodic on each knot-type EJJ van Rensburg, J Phys A 25 (1992) 1031
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GARM works for 2d polygons, but not 3d polygons

There are 3 minimal 3d unknots on Z3 and 3328 minimal trefoils
cannot reach one minimal configuration from another by growing

Use moves that grow and shrink

Generating graph still exists, but now sample paths are not directed

Need to “redirect” the graph
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This gives the “derivative graph”
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From GARM to GAS

GAS = Generalized Atmospheric Sampling = Grow And Shrink
EJJ van Rensburg and A Rechnitzer, J Phys A 42 (2009) 335001

Do GARM sampling on the derivative graph

Weight is a simple function of a±(ϕ), a0(ϕ)

〈W (ϕ)〉N
〈W (ϕ)〉M

=
CN

CM

Generalizes to Thermal GAS and Pruned Enriched GAS

Multicanonical and Flat Histogram GAS seems harder

Under development A Rechnitzer, private communication

Thomas Prellberg PERM and all that
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GAS Application: Minimal Polygons

Known exactly for trefoil C24(31) = 3328 Y Diao, JKTR 2 (1993) 413

Need to estimate numerically for other knot types

Draw a knot K on the cubic lattice
Run GAS with BFACF moves and extract the minimal polygons

EJJ van Rensburg and A Rechnitzer, JKTR, in print

Resulting numbers see also R Scharein et al, J Phys A 42 (2009) 475006

C24(31) = 3328 C30(41) = 2648

C34(51) = 6672 C36(52) = 114912

This can now be used to estimate e.g. the number of figure eight
knots

CN (41)

C30(41)
=
〈W (ϕ)〉N
〈W (ϕ)〉30

Thomas Prellberg PERM and all that
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Comparing the Algorithms?

Testing flatPERM using 1-dim random walk
JD Jiang and YN Huang, Comp Phys Commun 180 (2009) 177

Difference between multicanonical PERM and flatPERM?

About the same... M Bachmann, private communication

More importantly, are GARM/GAS better?

YES, as GARM/GAS works where Rosenbluth does not

NO, as large atmospheres might be very expensive to compute
(but maybe a trade-off with better sampling?)

Algorithms are ‘dirty’ (highly correlated data)

Can one prove anything useful?

Many more applications for GARM/GAS?

Thomas Prellberg PERM and all that
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Andrew Rechnitzer (Vancouver)

Buks van Rensburg (Toronto)
Monte Carlo methods for the self-avoiding walk, J Phys A 42 (2009) 323001

$$$

Deutsche Forschungsgemeinschaft (DFG)

MASCOS
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