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Motivation

configuration

® How to sample equilibrium
states of systems with rugged
free energy landscapes, e.g. spin
glasses, configurational glasses,
proteins, NP-hard combinatorial _- _/
optimization problems.
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® Markov chain Monte Carlo 5|\ —~
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temperature such as the g N/
Metropolis algorithm gets stuck
in local minima. v
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Qutline

Introduction to Parallel Tempering (aka
Replica Exchange Monte Carlo)

Strengths and Weaknesses of PT (in several
simple landscapes)

Introduction to Population Annealing

PA vs PT

Conclusions



Parallel Tempering

hard to equilibrate easy to equilibrate
P4 Br

*R replicas at inverse temperatures B, > 35, > ... > Pr
(each with the same couplings).

*MCMC (e.g. Metropolis) on each replica
eExchange replicas with energies £ and £ and
temperatures 3 and ’,with probability:

Prwep = min |1, e63-7E=0]



Intuition

» Mixing Is accelerated by “round trips” from
low to high temperature and back.

—Parallel tempering can be optimized by minimizing the
equilibrium round trip time.




A simple landscape:

» Consider a model free energy landscape
with two free energy minima separated by
a high barrier.

— JM, PRE 80, 056706 (2009)
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Two Well Model

BOF =~ (5~ f)*H

free energy

Prob |0 = +1] = T BoF




Parallel tempering for the two-well model
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* Assumptions: g
—Fast equilibration within each well by standard
MCMC.

—No transitions between wells except at . where
each well is equally probable.

—Energy is normally distributed in each state; from
thermodynamics:

(E) = —(08— 06.)(K + Ho) Var(F) = (K 4+ Ho)



Replica exchange probabilities

* For the two-well model, replica
exchange transition probabillities

can be computed exactly For
symmetric wells (H=0)

Pewap = mMin [1 o (B—B')(E— E)

(B) = —=(8 = ﬁiK Var(E | | | |
1

Dswap = §Erfc ((ﬁ 6
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Moving between wells
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Symmetric wells (H=0)

Dswap = %Erfc ((ﬁ — 5’)\/E)
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Symmetric wells (H=0)
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® Diffusion of replicas Povap = 5 Brfe (( 3_ @) /_K)
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Symmetric wells (H=0)

® Diffusion of replicas Pewan — %Erfc (( 8- ) \/E)

® Equilibration time T is
proportional to the mean first
passage time for diffusion from
Poto . with R equally spaced
replicas

free energy
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Symmetric wells (H=0)

® Diffusion of replicas

® Equilibration time T is
proportional to the mean first
passage time for diffusion from
Poto . with R equally spaced
replicas

® Optimum number of replicas
balances diffusion time and
replica exchange acceptance
fraction.

Ropt = 1+ 0.594(8y — B )VEK ~ /—3F

free energy
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pewap = gErfe (5~ #)VE)

T~ R* ~ BF
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Asymmetric wells (H>0)

* Replica exchange is biased
toward moving replicas in the
deep well to lower

temperature.

* Drift and diffusion instead of
diffusion:

— Replicas in the deeper well drift
toward lower temperature and
vice versa.

* Faster equilibration than for

the symmetric case!

5



Asymmetric wells (H>0)
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Equilibration time vs well asymmetry

BOF = 2 (8~ B0 H

o 2 4 6 8 10

symmetric asymmetric



FIG. 2: The exponential autocorrelation time 7exp for the fraction of sites in the deep well vs. the
well depth parameter K for H = 10 (green diamonds), H = 5 (red squares) and H = 0 (blue
circles). The lines are best power law fits, 7oy, ~ K* with z = 0.76, 0.83 and 0.99 for H = 10, 5

and 0, respectively.



PT for the ferromagnetic Ising model
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Exponential autocorrelation time for the
magnetization for the low temperature Ising
model with and without a temperature dependent
external field.



Ising spin glass, Gaussian disorder, L=8, 7/1.=0.2
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Ising spin glass, Gaussian disorder, L=8, 7/1.=0.2
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Weakness of Parallel Tempering

* “First-order” free energy landscapes. The simplest
and worst case is the “golf-course” potential:

— eN microstates,

— Nearly all have energy eN >0

— An small fraction, eV are ground states with energy
zero. There is a pseudo phase transition at S¢

— Probability to be in a ground state:

AenN

energy



Weakness of Parallel Tempering

* “First-order” free energy landscapes. The simplest
and worst case is the “golf-course” potential:

— eN microstates,

— Nearly all have energy eN >0

— An small fraction, eV are ground states with energy

zero. There is a pseudo phase transition at S¢
1
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— Probability to be in a ground state:

AenN

entropy wins energy wins
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Equilibration on the Golf Course
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Equilibration on the Golf Course

* The only advantage of parallel tempering is
crude parallelism.

» Each replica independently searches for grounds
states and sends them to low temperature when
they are found.

 Efficiency exceeds that of single temperature
MCMC only to the extent that there are more
replicas looking for grounds states than cold
replicas (6<f.) needing them.

» Before equilibration round trip-time is misleading.



Population Annealing

K. Hukushima and Y. Iba, in THE MONTE CARLO
METHOD IN THE PHYSICAL SCIENCES: Celebrating
the 50th Anniversary of the Metropolis Algorithm, edited
by J. E. Gubernatis (AIP, 2003), vol. 690, pp. 200—206.

® Modification of simulated annealing for equilibrium sampling.

® A population of replicas is cooled according to an annealing
schedule. Each replica is acted on by a MCMC (e.g. Metropolis)
at the current temperature.

® During each temperature step, the population is differentially
resampled according to Boltzmann weights to maintain
equilibrium.



Population Annealing

e

Population annealing = simulated annealing with
differential reproduction of replicas



Population Annealing
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Population annealing = simulated annealing with
differential reproduction of replicas



Temperature Step

i

(5 5/) _exXp [_(6/_ﬁ)Ej] . . )
T\ ) = Q5,5 Replica j is reproduced #n; times
where n; 1s a Poisson random
R o —(8 — B\E. number with mean z;.
Q(3,8) = D j—1 exp |[—=(8" — B)Ej]

R



Temperature Step

e

(ﬁ ﬁ/) _exXp [_(B/ _ 5)EJ] ] . .
T\ P = Q(8, ) Replica j is reproduced n; times
where n; 1s a Poisson random
SE exp [~ (8 - B)E;] number with mean ;.




Strengths of Population Annealing

® Massively parallel

® Direct measurement of the free energy

R ) |
— Ok F(Br) ZIHQ Bet1,Be) + B F(Br)  Q(B,5) = Z _, exp [—(8" — B)Ej]

R

® Comparable efficiency to parallel tempering
for Ising spin glasses.



Weighted Averages

JM, arXive:1006.0252

® Results using small number of replicas are biased.

® Results from independent runs can be combined and
biases reduced using weighted averages.

® Observables from each run weighted by the exponential
of the free energy estimator for that run.

A = 2 An(@em(B) - nlB) = S 5E G,

® Number of runs needed for unbiased results determined
by variance of the free energy estimator--an intrinsic
measure of equilibration.
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Bias in the energy for the 1D Ising spin
glass as a function of ensemble size.




Population Annealing

Parallel Tempering

Sequential Monte Carlo

Markov Chain Monte Carlo

# Replicas (R) ~ #Sweeps (7)

space

parallel time

#Temperature steps (1) ~ #Replicas (R)

parallel time

space
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Compare PA and PT for the Two-Well Model
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Population Annealing

Parallel Tempering

Sequential Monte Carlo

Markov Chain Monte Carlo

# Replicas (R)
space
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parallel time

#Temperature steps (7)
barallel time
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Conclusions

» Both parallel tempering and population annealing are
efficient at finding equilibria between free energy minima
with large basins of attraction separated by large
barriers.

- For PT efficiency is greatest when the minima are highly asymmetric

* Neither method is useful, except via brute force
parallelism, for the case of free energy minima with small
basins of attraction.

* Population annealing is comparably efficient to parallel
tempering and has several features to recommend it:
- Highly parallel
- Direct measurement of free energy
- Built-in equilibration criteria (variance of the free energy estimator)



