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• How to sample equilibrium 
states of systems with rugged 
free energy landscapes, e.g. spin 
glasses, configurational glasses, 
proteins, NP-hard combinatorial 
optimization problems.

Motivation



• Markov chain Monte Carlo 
(MCMC) at a single 
temperature such as the 
Metropolis algorithm gets stuck 
in local minima.

Problem
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• Introduction to Parallel Tempering (aka 

Replica Exchange Monte Carlo)

• Strengths and Weaknesses of PT (in several 
simple landscapes)
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pswap = min
[
1, e(β−β′)(E−E′)

]

Parallel Tempering

•R replicas at inverse temperatures β1 > β2 > ... > βR 
(each with the same couplings).
•MCMC (e.g. Metropolis) on each replica
•Exchange replicas with energies E and E′ and 
temperatures β and β′,with probability: 

βRβ4β3β2β1

hard to equilibrate easy to equilibrate

...



• Mixing is accelerated by “round trips” from 
low to high temperature and back.

–Parallel tempering can be optimized by minimizing the 
equilibrium round trip time.

Intuition

βRβ3β2β1

...



A simple landscape:

• Consider a model free energy landscape 
with two free energy minima separated by 
a high barrier.

– JM, PRE 80, 056706 (2009)



βFσ(β) = −1
2
(β − βc)2(K + Hσ)

Prob [σ = +1] =
1

1 + e−βδF

σ = 0, 1

βδF = −1
2
(β − βc)2H

σ=0 σ=1

Two Well Model



• Assumptions:
–Fast equilibration within each well by standard 

MCMC.
–No transitions between wells except at βc where 

each well is equally probable.
–Energy is normally distributed in each state; from 

thermodynamics:

Parallel tempering for the two-well model

Var(E) = (K + Hσ)〈E〉 = −(β − βc)(K + Hσ)



Var(E) = K〈E〉 = −(β − βc)K

pswap =
1
2
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(
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√
K

)

Replica exchange probabilities

pswap = min
[
1, e(β−β′)(E−E′)

]

• For the two-well model, replica 
exchange transition probabilities 
can be computed exactly. For 
symmetric wells (H=0):
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Moving between wells
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Symmetric wells (H=0) 
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Symmetric wells (H=0) 
• Diffusion of replicas pswap =
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Symmetric wells (H=0) 
• Diffusion of replicas

• Equilibration time τ is 
proportional to the mean first 
passage time for diffusion from 
β0 to βc with R equally spaced 
replicas
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Symmetric wells (H=0) 
• Diffusion of replicas

• Equilibration time τ is 
proportional to the mean first 
passage time for diffusion from 
β0 to βc with R equally spaced 
replicas

• Optimum number of replicas 
balances diffusion time and 
replica exchange acceptance 
fraction.
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Symmetric wells (H=0) 
• Diffusion of replicas

• Equilibration time τ is 
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Symmetric wells (H=0) 
• Diffusion of replicas

• Equilibration time τ is 
proportional to the mean first 
passage time for diffusion from 
β0 to βc with R equally spaced 
replicas

• Optimum number of replicas 
balances diffusion time and 
replica exchange acceptance 
fraction.

Ropt = 1 + 0.594(β0 − βc)
√

K ∼
√
−βF

τ ∼ R2 ∼ βF

pswap =
1
2
Erfc

(
(β − β′)

√
K

)



Asymmetric wells (H>0)

E

E′ β′>β

β
• Replica exchange is biased 

toward moving replicas in the 
deep well to lower 
temperature.

• Drift and diffusion instead of 
diffusion:
– Replicas in the deeper well drift 

toward lower temperature and 
vice versa.

• Faster equilibration than for 
the symmetric case!
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Equilibration time vs well asymmetry
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Exponential autocorrelation time for the 
magnetization for the low temperature Ising 
model with and without a temperature dependent 
external field.

PT for the ferromagnetic Ising model
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Weakness of Parallel Tempering
• “First-order” free energy landscapes.  The simplest 

and worst case is the “golf-course” potential:
– eN microstates, 
– Nearly all have energy εN >0
– An small fraction,  e-εβcN are ground states with energy 
zero.  There is a pseudo phase transition at  βc

– Probability to be in a ground state:

N
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• “First-order” free energy landscapes.  The simplest 

and worst case is the “golf-course” potential:
– eN microstates, 
– Nearly all have energy εN >0
– An small fraction,  e-εβcN are ground states with energy 
zero.  There is a pseudo phase transition at  βc
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Equilibration on the Golf Course

• The only advantage of parallel tempering is 
crude parallelism.  

• Each replica independently searches for grounds 
states and sends them to low temperature when 
they are found.

• Efficiency exceeds that of single temperature 
MCMC only to the extent that there are more 
replicas looking for grounds states than cold 
replicas (β<βc) needing them.

• Before equilibration round trip-time is misleading.



• Modification of simulated annealing for equilibrium sampling.

• A population of replicas is cooled according to an annealing 
schedule.  Each replica is acted on by a MCMC (e.g. Metropolis) 
at the current temperature.

• During each temperature step, the population is differentially 
resampled according to Boltzmann weights to maintain 
equilibrium.

Population Annealing

5

0.1 0.2 0.3 0.4
10
!5

10
!4

0.001

0.01

0.1

Var!ΒF"

Κ

FIG. 3: The variance of the free energy Var(βF̃ ) vs. the prob-
ability of a small overlap, κ, for a sample of 25 disorder real-
izations.
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FIG. 4: The histogram of the dimensionless free energy, −βF .
The solid line is the best fit to a Gaussian distribution.

spin glasses and perhaps other systems with rough free
energy landscapes. By using weighted averages over an
ensemble of runs, biases inherent in a single run can be
can be made small and high precision results can be ob-
tained. The method can be optimized by minizing the
variance of the free energy estimator. If the variance of
the free energy estimator is less than unity, high precision
results can be obtained from a relatively small ensemble
of runs. The method is comparable in efficiency to par-
allel tempering and is well suited to parallelization.
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Temperature Step
E1 E2 E3 E4 E5 ER

β ...

τj(β,β′) =
exp [−(β′ − β)Ej ]

Q(β,β′)

Q(β,β′) =
∑R

j=1 exp [−(β′ − β)Ej ]
R

Replica j is reproduced nj times 
where nj is a Poisson random 
number with mean τj.
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τj(β,β′) =
exp [−(β′ − β)Ej ]

Q(β,β′)

Q(β,β′) =
∑R

j=1 exp [−(β′ − β)Ej ]
R

Replica j is reproduced nj times 
where nj is a Poisson random 
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β′



• Massively parallel 

• Direct measurement of the free energy

• Comparable efficiency to parallel tempering 
for Ising spin glasses.

Strengths of Population Annealing

−βkF (βk) =
K∑

!=k

lnQ(β!+1, β!) + βKF (βK) Q(β,β′) =
∑R

j=1 exp [−(β′ − β)Ej ]
R



Weighted Averages
• Results using small number of replicas are biased.

• Results from independent runs can be combined and 
biases reduced using weighted averages.

• Observables from each run weighted by the exponential 
of the free energy estimator for that run.

• Number of runs needed for unbiased results determined 
by variance of the free energy estimator--an intrinsic 
measure of equilibration.

A(β) =
M∑

m=1

Ãm(β)ωm(β) ωm(β) =
e−βF̃m(β)

∑M
i=1 e−βF̃i(β)

JM, arXive:1006.0252
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Population Annealing Parallel Tempering

Sequential Monte Carlo Markov Chain Monte Carlo

# Replicas (R)
space

#Sweeps (t)
parallel time

#Temperature steps (T)
parallel time

#Replicas (R)
space

≈

≈



= PA
= PT

Γ = 〈Prob [σ = +1]〉 − 〈Prob [σ = +1]〉eq
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Population Annealing Parallel Tempering

Sequential Monte Carlo Markov Chain Monte Carlo

# Replicas (R)
space

#Sweeps (t)
parallel time

#Temperature steps (T)
parallel time

#Replicas (R)
space

(A−Aeq) ≈ R0/R (A−Aeq)  ≈ e(-t/τ)

R0~K1/2      T~K1/2 τ ~K  R~K1/2

≈
≈



Conclusions
• Both parallel tempering and population annealing are 

efficient at finding equilibria between free energy minima 
with large basins of attraction separated by large 
barriers.
- For PT efficiency is greatest when the minima are highly asymmetric

• Neither method is useful, except via brute force 
parallelism, for the case of free energy minima with small 
basins of attraction.

• Population annealing is comparably efficient to parallel 
tempering and has several features to recommend it:
- Highly parallel
- Direct measurement of free energy
- Built-in equilibration criteria (variance of the free energy estimator)


