Monte Carlo algorithms for hard spheres, 2D melting transition

Werner KRAUTH

Département de physique Ecole normale supérieure Paris, France

Melbourne, 28 July 2010

Table of contents

• Monte Carlo methods and hard spheres

- MD and MC
- 2D melting
- General remarks on MC algorithms

• Cluster Monte Carlo algorithms, Event chains

- Estimating correlation times
- Pivot clusters
- Event chains
- Breaking detailed balance
- Applications
- Perfect sampling
 - Infinitely long Monte Carlo simulations
- Conclusion
 - $\bullet~$ Statistical Mechanics $\equiv~$ Algorithms &Computations

Molecular dynamics ('Newton')

• A molecular dynamics algorithm for hard spheres (billiard):

- ... starting point of Molecular dynamics, in 1957 ...
- ... treats positions and velocities ...
- ... useful for $N \gg 4$, but times extremely short ...
- ... converges towards thermal equilibrium.

Markov-chain Monte Carlo ('Boltzmann')

• A local Markov-chain Monte Carlo algorithm for hard spheres (billiard):

- ... starting point of Markov chain Monte Carlo, in 1953 ...
- ... treats only positions ...
- ... useful for $N \gg 4$...
- ... converges towards thermal equilibrium.

2D melting transition

- At low density, disks move easily (liquid)
- ... at high density, MC algorithms slow down and disks crystallize ...
- ... but nature of transition long disputed (first order vs. KTHNY)
- cf. Blöte et al. (2002); van Enter, Schlosman (2002)

Correlation time in larger simulations

• τ exists, but it is large ($\tau \gg 25\,600\,000\,000$).

Correlation time in systems of current interest

- Knowing correlation time τ would be nice (Part I).
- Faster algorithms would be nice (Part II).
- Understanding why they are faster would be nice.
- Doing interesting physics with them would be nice (Part III).
- An infinitely long simulation is best (Part IV).

Correlation time (square box)

- Hypothesis: Correlation time ≡ correlation time of order parameter
- ... much more cautious than others ...

'Avalanche' Monte Carlo I

'Avalanche' Monte Carlo II

 $a \ (+ \ move)$

a

b (+ return move)

- Avalanche Monte Carlo has problems with detailed balance
- ... and is related to the 'independent set' problem...
- cf. Jaster (1999, 2004)

Pivot cluster algorithm I

Pivot cluster algorithm II

a

b (+ return move)

Pivot cluster algorithm for hard spheres

- Dress, Krauth (1995)
- Many applications, but fails for 2d melting.

Binary mixtures of disks

 $\eta_{\rm B}=\eta_{\rm S}=0.26$

• homogeneous mixtures up to high densities...

Binary mixtures of squares

 $\eta_{\rm B}=\eta_{\rm S}=0.18$

 $\eta_{\rm B}=\eta_{\rm S}=0.26$

• solid-liquid phase separation

- Liquid-solid phase separation in 2*d* (squares) and 3*d* (spheres, cubes) (Buhot, Krauth '98, '99).
- ... verified experimentally (Dinsmore et al. '95).

Event-chain algorithm for hard spheres

• fast even at high density ...

Event-chain algorithm for hard spheres

- rejection-free
- detailed balance OK ($\theta \in [0, 2\pi]$)
- Bernard, Krauth, Wilson (2009)

Giving up detailed balance

- breaking detailed balance speeds up algorithms
- ... not so common (cf. Diaconis et al (2000))
- cf. Turitsyn et al (2008); Suwa, Todo (2010)

 detailed balance = microreversibility & conservation of phase space volume

Relative timing issues

Absolute timing issues

- Naively, MD seems orders of magnitude slower than MC
- ... but recent improvements in algorithms

Equilibrated configuration

Dislocations

- Perfect sampling: Markov chains that are proven to converge....
- Continuous system...with hidden discrete structure...

Birth and death for hard spheres

- Space of configurations infinite...
- ... yet underlying discrete structure
- Patch algorithm (Chanal and Krauth 2010)

Birth and death for hard spheres II

• Hidden discrete structure in a continuous model.

- J. G. Propp and D. B. Wilson 'Exact sampling with coupled Markov chains and applications to statistical mechanics' Random Structures & Algorithms 9, 223 (1995).
- W. Krauth 'Statistical Mechanics: Algorithms and Computations' (Oxford University Press, 2006) Wiki site http://www.smac.lps.ens.fr
- C. Chanal and W. Krauth 'Renormalization group approach to exact sampling' PRL (2008),
- C. Chanal and W. Krauth 'Convergence and coupling for spin glasses and hard spheres' PRE (2010)
- E. P. Bernard, W. Krauth, and D. B. Wilson 'Event-chain Monte Carlo algorithm for hard-sphere systems' PRE (2010)

OXFORD MASTER SERIES IN STATISTICAL, COMPUTATIONAL, AND THEORETICAL PHYSICS

Statistical Mechanics:

Algorithms and Computations

Werner Krauth

One-d convergence

- Markov-chain Monte Carlo algorithm on 5 sites...
- . . . converges as $\exp\left[-t/\tau\right]$ with finite correlation time τ . . .

One-d calculation that finishes on time!

- ... start earlier and earlier ...
- ... get done on time ...
- ... Propp, Wilson (1995).

Random maps, coupling

- Markov-chain Monte Carlo algorithm ...
- ... with random maps.
- This chain couples after 10 steps.

Correlations and coupling III (from the past)

- Simulation starts really early (at time $t\simeq -\infty)$...
- ... At time t = 0, we are done ...
- ... infinite simulation.

