
Worm algorithm for loop model on the square
lattice

Wenan Guo

Beijing Normal University

July, 2010, Melbourne



in collaboration with

Youjin Deng, USTC, China

Chengxiang Ding, BNU, China

Henk W.J. Blöte, Lorentz Institute, The Netherlands



outlines

Motivations

O(n) intersecting loop model

The worm algorithms

Tests and efficiency

Summary



Motivations

I There are exact results for a number of two-dimensional O(n)
loop models. But, these models form only a relatively small
subset. It is useful to develop numerical approaches to
investigate O(n) loop models in a more general context.

I Transfer-matrix calculations are restricted to relatively small
sizes, and are able to generate satisfactory results only if the
corrections to scaling are not too large.

I There exists a class of intersecting loop models displaying
extremely slow finite-size convergence. ( Martins, Nienhuis and
Rietman, PRL 1998, Martins and Nienhuis, JPA 1998, de Gier and
Nienhuis, JSTAT, 2005.)
When crossings of loops are allowed, the low-temperature phase is
distinct from nonintersecting loop models. (Jacobsen et al, PRL
2003). And the LT branch of the nonintersecting loop model can be
mapped onto a tricritical loop model with a different loop weight.
(Nienhuis, WG and Blöte, PRE, 2009).



Motivations

I There are exact results for a number of two-dimensional O(n)
loop models. But, these models form only a relatively small
subset. It is useful to develop numerical approaches to
investigate O(n) loop models in a more general context.

I Transfer-matrix calculations are restricted to relatively small
sizes, and are able to generate satisfactory results only if the
corrections to scaling are not too large.

I There exists a class of intersecting loop models displaying
extremely slow finite-size convergence. ( Martins, Nienhuis and
Rietman, PRL 1998, Martins and Nienhuis, JPA 1998, de Gier and
Nienhuis, JSTAT, 2005.)
When crossings of loops are allowed, the low-temperature phase is
distinct from nonintersecting loop models. (Jacobsen et al, PRL
2003). And the LT branch of the nonintersecting loop model can be
mapped onto a tricritical loop model with a different loop weight.
(Nienhuis, WG and Blöte, PRE, 2009).



Motivations

I There are exact results for a number of two-dimensional O(n)
loop models. But, these models form only a relatively small
subset. It is useful to develop numerical approaches to
investigate O(n) loop models in a more general context.

I Transfer-matrix calculations are restricted to relatively small
sizes, and are able to generate satisfactory results only if the
corrections to scaling are not too large.

I There exists a class of intersecting loop models displaying
extremely slow finite-size convergence. ( Martins, Nienhuis and
Rietman, PRL 1998, Martins and Nienhuis, JPA 1998, de Gier and
Nienhuis, JSTAT, 2005.)

When crossings of loops are allowed, the low-temperature phase is
distinct from nonintersecting loop models. (Jacobsen et al, PRL
2003). And the LT branch of the nonintersecting loop model can be
mapped onto a tricritical loop model with a different loop weight.
(Nienhuis, WG and Blöte, PRE, 2009).



Motivations

I There are exact results for a number of two-dimensional O(n)
loop models. But, these models form only a relatively small
subset. It is useful to develop numerical approaches to
investigate O(n) loop models in a more general context.

I Transfer-matrix calculations are restricted to relatively small
sizes, and are able to generate satisfactory results only if the
corrections to scaling are not too large.

I There exists a class of intersecting loop models displaying
extremely slow finite-size convergence. ( Martins, Nienhuis and
Rietman, PRL 1998, Martins and Nienhuis, JPA 1998, de Gier and
Nienhuis, JSTAT, 2005.)
When crossings of loops are allowed, the low-temperature phase is
distinct from nonintersecting loop models. (Jacobsen et al, PRL
2003). And the LT branch of the nonintersecting loop model can be
mapped onto a tricritical loop model with a different loop weight.
(Nienhuis, WG and Blöte, PRE, 2009).



Motivations

I so that Monte Carlo simulation seems a good realistic option
to obtain satisfactory numerical results for the intersecting
loop models.

I An efficient Monte Carlo algorithm of the cluster type is
available for 2D nonintersecting loop models (Deng et al, PRL
2007). Thus far, no efficient Monte Carlo algorithm to
simulate intersecting loop models.



Motivations

I so that Monte Carlo simulation seems a good realistic option
to obtain satisfactory numerical results for the intersecting
loop models.

I An efficient Monte Carlo algorithm of the cluster type is
available for 2D nonintersecting loop models (Deng et al, PRL
2007). Thus far, no efficient Monte Carlo algorithm to
simulate intersecting loop models.



O(n) spin model on the square lattice
Put spins on the middle of the edges of the square lattice

Z =
∫ [∏

i

d~si

]∏
V

{1 + u (~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s4 + ~s4 · ~s1) +

v (~s1 · ~s3 + ~s2 · ~s4)+w [(~s1 · ~s2)(~s3 · ~s4) + (~s2 · ~s3)(~s4 · ~s1)]+c(~s1·~s3)(~s2·~s4)}

~si: n-component vector spin, the weight is O(n) symmetric

SS

S2

3

S4

1

Expansion of Z in powers of u, v, w, c
yields an O(n) (intersecting) loop model

Z =
∑
A
nl
∏
i∈V

ωi =
∑
A
nluNuvNvwNwcNc

u10v2w1n2

u10v2c1n2

w c1 u v



O(n) spin model on the square lattice
Put spins on the middle of the edges of the square lattice

Z =
∫ [∏

i

d~si

]∏
V

{1 + u (~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s4 + ~s4 · ~s1) +

v (~s1 · ~s3 + ~s2 · ~s4)+w [(~s1 · ~s2)(~s3 · ~s4) + (~s2 · ~s3)(~s4 · ~s1)]+c(~s1·~s3)(~s2·~s4)}

~si: n-component vector spin, the weight is O(n) symmetric

Expansion of Z in powers of u, v, w, c
yields an O(n) (intersecting) loop model

Z =
∑
A
nl
∏
i∈V

ωi =
∑
A
nluNuvNvwNwcNc

u10v2w1n3

u10v2w1n2

u10v2c1n2

w c1 u v



O(n) spin model on the square lattice
Put spins on the middle of the edges of the square lattice

Z =
∫ [∏

i

d~si

]∏
V

{1 + u (~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s4 + ~s4 · ~s1) +

v (~s1 · ~s3 + ~s2 · ~s4)+w [(~s1 · ~s2)(~s3 · ~s4) + (~s2 · ~s3)(~s4 · ~s1)]+c(~s1·~s3)(~s2·~s4)}

~si: n-component vector spin, the weight is O(n) symmetric

Expansion of Z in powers of u, v, w, c
yields an O(n) (intersecting) loop model

Z =
∑
A
nl
∏
i∈V

ωi =
∑
A
nluNuvNvwNwcNc

u10v2w1n2

u10v2c1n2

w c1 u v



O(n) spin model on the square lattice
Put spins on the middle of the edges of the square lattice

Z =
∫ [∏

i

d~si

]∏
V

{1 + u (~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s4 + ~s4 · ~s1) +

v (~s1 · ~s3 + ~s2 · ~s4)+w [(~s1 · ~s2)(~s3 · ~s4) + (~s2 · ~s3)(~s4 · ~s1)]+c(~s1·~s3)(~s2·~s4)}

~si: n-component vector spin, the weight is O(n) symmetric

Expansion of Z in powers of u, v, w, c
yields an O(n) (intersecting) loop model

Z =
∑
A
nl
∏
i∈V

ωi =
∑
A
nluNuvNvwNwcNc

u10v2w1n2

u10v2c1n2

w c1 u v



Worm algorithm
Enlarge the set of configurations of the loop model by including
two “special” vertices I and M .

I If I = M , all vertices have an even number of incident
occupied bonds.

I if I 6= M the vertices I and M have an odd number of
incident occupied bonds.

I(M)

Let S be a state in the enlarged space

φS = nl ·
∏
i∈V

ωi ,

ωi can be 1, u, v, w, c, and y, z

Zw =
∑
S
φS .



Worm algorithm
Enlarge the set of configurations of the loop model by including
two “special” vertices I and M .

I If I = M , all vertices have an even number of incident
occupied bonds.

I if I 6= M the vertices I and M have an odd number of
incident occupied bonds.

I(M)

Let S be a state in the enlarged space

φS = nl ·
∏
i∈V

ωi ,

ωi can be 1, u, v, w, c, and y, z

Zw =
∑
S
φS .



Worm algorithm
Enlarge the set of configurations of the loop model by including
two “special” vertices I and M .

I If I = M , all vertices have an even number of incident
occupied bonds.

I if I 6= M the vertices I and M have an odd number of
incident occupied bonds.

I

M

Let S be a state in the enlarged space

φS = nl ·
∏
i∈V

ωi ,

ωi can be 1, u, v, w, c, and y, z

Zw =
∑
S
φS .



Worm algorithm
Enlarge the set of configurations of the loop model by including
two “special” vertices I and M .

I If I = M , all vertices have an even number of incident
occupied bonds.

I if I 6= M the vertices I and M have an odd number of
incident occupied bonds.

I

M

Let S be a state in the enlarged space

φS = nl ·
∏
i∈V

ωi ,

ωi can be 1, u, v, w, c, and y, z

w cv1 u

y z

Zw =
∑
S
φS .



The Algorithm

1. Randomly choose a vertex k ∈ V and move I = M to k. The
configuration of occupied bonds remains unchanged.

2. Let the current state be S. Randomly choose I or M– say M ;
randomly choose one M ′ of the 4 nearest-neighbor vertices of
M . Propose a move M →M ′ while inverting the edge e
between M and M ′ as e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible ways to connect the incoming occupied
bonds of M and M ′ after the proposed bond update.

4. Accept the proposed update S → S ′ with appropriate
acceptance probability Pa(S → S ′).

5. Relabel M ′ as M . If M = I, then goto 1; else go to 2.



The Algorithm

1. Randomly choose a vertex k ∈ V and move I = M to k. The
configuration of occupied bonds remains unchanged.

2. Let the current state be S. Randomly choose I or M– say M ;
randomly choose one M ′ of the 4 nearest-neighbor vertices of
M . Propose a move M →M ′ while inverting the edge e
between M and M ′ as e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible ways to connect the incoming occupied
bonds of M and M ′ after the proposed bond update.

4. Accept the proposed update S → S ′ with appropriate
acceptance probability Pa(S → S ′).

5. Relabel M ′ as M . If M = I, then goto 1; else go to 2.



The Algorithm

1. Randomly choose a vertex k ∈ V and move I = M to k. The
configuration of occupied bonds remains unchanged.

2. Let the current state be S. Randomly choose I or M– say M ;
randomly choose one M ′ of the 4 nearest-neighbor vertices of
M . Propose a move M →M ′ while inverting the edge e
between M and M ′ as e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible ways to connect the incoming occupied
bonds of M and M ′ after the proposed bond update.

4. Accept the proposed update S → S ′ with appropriate
acceptance probability Pa(S → S ′).

5. Relabel M ′ as M . If M = I, then goto 1; else go to 2.



The Algorithm

1. Randomly choose a vertex k ∈ V and move I = M to k. The
configuration of occupied bonds remains unchanged.

2. Let the current state be S. Randomly choose I or M– say M ;
randomly choose one M ′ of the 4 nearest-neighbor vertices of
M . Propose a move M →M ′ while inverting the edge e
between M and M ′ as e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible ways to connect the incoming occupied
bonds of M and M ′ after the proposed bond update.

4. Accept the proposed update S → S ′ with appropriate
acceptance probability Pa(S → S ′).

5. Relabel M ′ as M . If M = I, then goto 1; else go to 2.



The Algorithm

1. Randomly choose a vertex k ∈ V and move I = M to k. The
configuration of occupied bonds remains unchanged.

2. Let the current state be S. Randomly choose I or M– say M ;
randomly choose one M ′ of the 4 nearest-neighbor vertices of
M . Propose a move M →M ′ while inverting the edge e
between M and M ′ as e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible ways to connect the incoming occupied
bonds of M and M ′ after the proposed bond update.

4. Accept the proposed update S → S ′ with appropriate
acceptance probability Pa(S → S ′).

5. Relabel M ′ as M . If M = I, then goto 1; else go to 2.



Acceptance probability
I

Mstep 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.

step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move

A given bond configuration may
correspond with different loop configurations.

step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.

step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, select a state S ′

step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, or a state S ′

step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,

pp(S ′|S) the proposal probability from S to S ′:

pp(S ′|S) =
1
8
· 1
dM (S ′)

· 1
dM ′(S ′)

, dM (S ′) = 3, or, 1

1/8 accounts for the random choices of I (M) and of one out of
four neighbors.



Acceptance probability
I

M
M’

step 2, current state S

step 2, a test move
A given bond configuration may
correspond with different loop configurations.
step 3, or another S ′

The acceptance probability

Pa(S → S ′) = min
(

1, pp(S|S′)
pp(S′|S) ·

φS′
φS

)
,

= min
(

1,
dM (S ′)dM ′(S ′)ωM (S ′)ωM ′(S ′)n∆l

dM (S)dM ′(S)ωM (S)ωM ′(S)

)
.

where ∆l = l(S ′)− l(S)
is the change of the number of loops



Examples

S1 S2

I(M) I M

S3 S4

I(M) I M

S5 S6

M M

Pa(S1 → S2) = min
(

1,
z2nl2

9w2nl1

)

Pa(S3 → S4) = min
(

1,
zynl4

3wunl3

)
Pa(S5 → S6) = min

(
1,

3cznl6

uznl5

)



n 6= 1 case

In the calculation of the acceptance probability Pa, one has to
count the change ∆l of the loop number. This is a nonlocal
procedure.

I Sweeny algorithm

I Coloring technique



Worm algorithm with the coloring technique ( n ≥ 1 )

1. Randomly choose a vertex k ∈ V , move I = M to k, and do
the following: independently for each loop, color all its
occupied bonds to be “active” (green) with probability 1/n
and to be “inactive” (red) with probability 1− 1/n; all empty
edges are assigned “active” (green).

2. Let the current state be S. Randomly choose I or M–say I;
randomly choose one I ′ of the four nearest-neighbor vertices
of I. If the edge e between I and I ′ is “red”, the present
Monte Carlo step is done. Otherwise, propose moving I → I ′

and inverting the edge e between I and I ′ as: e = 0↔ e = 1.
3. Randomly select one of the possible states S ′ by taking into

account all possible pairings for vertices I and I ′ after the
proposed bond update. Note that different pairings can only
occur for “green” occupied bonds; no repairing should occur
for edges in red, and no pairing exists between “red” and
“green” edges.

4. Accept the proposal update S → S ′ with the appropriate
acceptance probability Pa(S → S ′).

5. Relabel I ′ as I. If I = M , then goto 1; else go to 2.



Worm algorithm with the coloring technique ( n ≥ 1 )

1. Randomly choose a vertex k ∈ V , move I = M to k, and do
the following: independently for each loop, color all its
occupied bonds to be “active” (green) with probability 1/n
and to be “inactive” (red) with probability 1− 1/n; all empty
edges are assigned “active” (green).

2. Let the current state be S. Randomly choose I or M–say I;
randomly choose one I ′ of the four nearest-neighbor vertices
of I. If the edge e between I and I ′ is “red”, the present
Monte Carlo step is done. Otherwise, propose moving I → I ′

and inverting the edge e between I and I ′ as: e = 0↔ e = 1.

3. Randomly select one of the possible states S ′ by taking into
account all possible pairings for vertices I and I ′ after the
proposed bond update. Note that different pairings can only
occur for “green” occupied bonds; no repairing should occur
for edges in red, and no pairing exists between “red” and
“green” edges.

4. Accept the proposal update S → S ′ with the appropriate
acceptance probability Pa(S → S ′).

5. Relabel I ′ as I. If I = M , then goto 1; else go to 2.



Worm algorithm with the coloring technique ( n ≥ 1 )

1. Randomly choose a vertex k ∈ V , move I = M to k, and do
the following: independently for each loop, color all its
occupied bonds to be “active” (green) with probability 1/n
and to be “inactive” (red) with probability 1− 1/n; all empty
edges are assigned “active” (green).

2. Let the current state be S. Randomly choose I or M–say I;
randomly choose one I ′ of the four nearest-neighbor vertices
of I. If the edge e between I and I ′ is “red”, the present
Monte Carlo step is done. Otherwise, propose moving I → I ′

and inverting the edge e between I and I ′ as: e = 0↔ e = 1.
3. Randomly select one of the possible states S ′ by taking into

account all possible pairings for vertices I and I ′ after the
proposed bond update. Note that different pairings can only
occur for “green” occupied bonds; no repairing should occur
for edges in red, and no pairing exists between “red” and
“green” edges.

4. Accept the proposal update S → S ′ with the appropriate
acceptance probability Pa(S → S ′).

5. Relabel I ′ as I. If I = M , then goto 1; else go to 2.



Worm algorithm with the coloring technique ( n ≥ 1 )

1. Randomly choose a vertex k ∈ V , move I = M to k, and do
the following: independently for each loop, color all its
occupied bonds to be “active” (green) with probability 1/n
and to be “inactive” (red) with probability 1− 1/n; all empty
edges are assigned “active” (green).

2. Let the current state be S. Randomly choose I or M–say I;
randomly choose one I ′ of the four nearest-neighbor vertices
of I. If the edge e between I and I ′ is “red”, the present
Monte Carlo step is done. Otherwise, propose moving I → I ′

and inverting the edge e between I and I ′ as: e = 0↔ e = 1.
3. Randomly select one of the possible states S ′ by taking into

account all possible pairings for vertices I and I ′ after the
proposed bond update. Note that different pairings can only
occur for “green” occupied bonds; no repairing should occur
for edges in red, and no pairing exists between “red” and
“green” edges.

4. Accept the proposal update S → S ′ with the appropriate
acceptance probability Pa(S → S ′).

5. Relabel I ′ as I. If I = M , then goto 1; else go to 2.



Worm algorithm with the coloring technique ( n ≥ 1 )

1. Randomly choose a vertex k ∈ V , move I = M to k, and do
the following: independently for each loop, color all its
occupied bonds to be “active” (green) with probability 1/n
and to be “inactive” (red) with probability 1− 1/n; all empty
edges are assigned “active” (green).

2. Let the current state be S. Randomly choose I or M–say I;
randomly choose one I ′ of the four nearest-neighbor vertices
of I. If the edge e between I and I ′ is “red”, the present
Monte Carlo step is done. Otherwise, propose moving I → I ′

and inverting the edge e between I and I ′ as: e = 0↔ e = 1.
3. Randomly select one of the possible states S ′ by taking into

account all possible pairings for vertices I and I ′ after the
proposed bond update. Note that different pairings can only
occur for “green” occupied bonds; no repairing should occur
for edges in red, and no pairing exists between “red” and
“green” edges.

4. Accept the proposal update S → S ′ with the appropriate
acceptance probability Pa(S → S ′).

5. Relabel I ′ as I. If I = M , then goto 1; else go to 2.



Example

I(M)MI

S S ′

dI(S) = 1, dI′(S) = 1

dI(S ′) = 1, dI′(S ′) = 3



Example

I(M)I’(M)I

S S ′

dI(S) = 1, dI′(S) = 1

dI(S ′) = 1, dI′(S ′) = 3



I Test the worm algorithm by studying the critical properties of
the model

I Check the efficiency of the algorithm



Exactly known critical exponents of the O(n) loop model

At the critical branch of the model

I thermal exponent: yt = 4g−4
g

I Magnetic exponent: yh = 1 + 1
2g + 3g

8

I Hull exponent: yH = 1 + 1
2g

which describes the decay of the probability that two bonds
are sitting at the same loop, is also the fractal dimension dl of
the loops.

g is the Coulomb-gas coupling: n = −2 cos(πg), 1 ≤ g ≤ 3/2



Determination of the critical points and yt
We determine the critical point in two subspace:

I without crossing bonds, u = v = x,w = x2, c = 0
I with crossing bonds, u = v = x,w = c = x2

Consider the wrapping probability Pw

Pw(x, L) = P
(0)
w + a(x− xc)Lyt + b1L

yu1 + · · ·

without crossing bonds, n = 1 with crossing bonds,
n = 1.5



Determination of the critical points and yt
We determine the critical point in two subspace:

I without crossing bonds, u = v = x,w = x2, c = 0
I with crossing bonds, u = v = x,w = c = x2

Consider the wrapping probability Pw

Pw(x, L) = P
(0)
w + a(x− xc)Lyt + b1L

yu1 + · · ·

without crossing bonds, n = 1 with crossing bonds,
n = 1.5



Determination of the critical points and yt
We determine the critical point in two subspace:

I without crossing bonds, u = v = x,w = x2, c = 0
I with crossing bonds, u = v = x,w = c = x2

Consider the wrapping probability Pw

Pw(x, L) = P
(0)
w + a(x− xc)Lyt + b1L

yu1 + · · ·

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.4045  0.4055  0.4065  0.4075  0.4085

P
w

x

 8
16
32
64

128
256

without
crossing bonds,
n = 1

with crossing bonds,
n = 1.5



Determination of the critical points and yt
We determine the critical point in two subspace:

I without crossing bonds, u = v = x,w = x2, c = 0
I with crossing bonds, u = v = x,w = c = x2

Consider the wrapping probability Pw

Pw(x, L) = P
(0)
w + a(x− xc)Lyt + b1L

yu1 + · · ·

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.433  0.434  0.435  0.436  0.437

P
w

x

 8
16
32
64

128
256

without
crossing bonds,
n = 1

with crossing bonds,
n = 1.5



Determination of other exponents

Simulate the model at the estimated critical point.

nb = the average density of occupied bonds

nw = the average fraction of edges covered by the wrapping loop

S2 = the average of the sum of squares of loop lengths per site

lw = the average length of worm steps per site



Determination of other exponents: yh
n = 1.5, in the subspace with crossing bonds

lw ∝ L2yh−4

 0.48

 0.57

 0.68

 0.82

 0.97

 1.19

 1.42

 8  16  32  64  128  256  512

l w

L

yh = 1.8679(6)



Determination of other exponents: yH

n = 1.5, in the subspace with crossing bonds

S2 ∝ L2yH−4

 0.0015

 0.00343

 0.00769

 0.0171

 0.0375

 0.0806

 0.168

 8  16  32  64  128  256  512

S 2

L

yH = 1.405(2)



Determination of other exponents: yH
n = 1.5, in the subspace with crossing bonds

nw ∝ LyH−2

 0.025

 0.035

 0.05

 0.075

 0.115

 0.175

 0.255

 8  16  32  64  128  256  512

n w

L

yH = dl = 1.405(2)



Numerical results

Simulation results (S) in the subspace u = v = x,w = x2, c = 0.

n xc yt yh yH P
(0)
w

1 E 1 1.875 1.375
T 0.40644(1)
S 0.40644(1) 1.002(3) 1.8749(3) 1.374(1) 0.516(1)

1.5 E 0.748109 1.86776 1.40649
T 0.43535(2)
S 0.43535(1) 0.747(5) 1.8675(5) 1.4067(6) 0.6530(4)



Numerical results

Simulation results (S) in the subspace u = v = x,w = c = x2.

n xc yt yh yH P
(0)
w

1 E 1 1.875 1.375
T 0.398048(2)
S 0.398050(5) 1.001(3) 1.8749(3) 1.3755(6) 0.516(1)

1.5 E 0.748109 1.86776 1.40649
T 0.423622(2)
S 0.42366(5) 0.744(5) 1.8679(6) 1.405 (2) 0.654(1)



Dynamic behavior of the algorithm

Integrated autocorrelation times τint versus lattice size L (n = 1.5)
in the subspace u = v = x,w = c = x2. (The unit of time is
normalized to ’visit per site’).

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  50  100  150  200  250  300

τ i
nt

L

s2
nb
nw

z(S2) ≈ 0.2, z(nb) ≈ 0.3, z(nw) ≈ 0.3



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Summary

I We developed a worm algorithm for the O(n) intersecting
loop model on the square lattice.

I Our algorithm has little critical slowing-down when 1 ≤ n ≤ 2.

I We tested this algorithm by investigating the critical
properties of the model, for which we determine the critical
points and several critical exponents.

I The present of crossing bonds is found to be irrelevant at the
critical branch of the loop.

I we shall check the low-temperature phase of the intersecting
loop model

Thank You



Thank You


	Contents
	Main Talk
	Motivations
	O(n) intersecting loop model
	The worm algorithms
	Tests and efficiency
	Summary


