
Potts models with long-range interactions
———————————————–

Henk W.J. Blöte
Lorentz Institute, Leiden University, The Netherlands

Outline:

1. Universality and range of interaction

2. Simulation of long-range models

3. The long-range Potts model

Contributors:

Xiaofeng Qian (Leiden University, Netherlands)

Youjin Deng (Hefei University of Sci.&Tech., China)

Erik Luijten (Northwestern University, USA)

. – p.1/28



1. Universality and range of interaction

 / jT � T j�� ,

Critical exponents: e.g., mspont / jT � T j� ,� / jT � T j� ,

occur in classes.
Renormalization theory:

universality classes determined by

1. symmetry and nature of order parameter

2. dimensionality
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1. Universality and range of interaction

 / jT � T j�� ,

Critical exponents: e.g., mspont / jT � T j� ,� / jT � T j� ,

occur in classes.
Renormalization theory:

universality classes determined by

1. symmetry and nature of order parameter

2. dimensionality

No, mean-field models behave differently.

. – p.4/28



1. Universality and range of interaction

 / jT � T j�� ,

Critical exponents: e.g., mspont / jT � T j� ,� / jT � T j� ,

occur in classes.
Renormalization theory:

universality classes determined by

1. symmetry and nature of order parameter

2. dimensionality

3. range of interaction
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Ising models with variable range:

H = �Xi;j K(j~ri � ~rj j)sisj
whereH specifies energyi; j; : : : label lattice sitesK(r) is coupling for sites at distance rsi = �1 are Ising variables

Two ways to vary range of interaction

1. K(r) = K�(R� r) equivalent-neighbor model

2. K(r) = Kr�(d+�) power-law decay with distance

Theories available!
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Theory for models with power-law decay of interaction:

M.E. Fisher, S.-k. Ma and B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972).

 0

 1

 2

 3

 4

 5

 0  1  2  3

d
im

en
si

o
n
al

it
y

decay parameter

LR SR

classical

σ

d

. – p.7/28



2. Simulation of long-range models

Accurate numerical tests of theory took over 20 years

Numerical verification by Metropolis method almost impossible

Time needed to generate independent configuration:trelax = NswNspt1sp
withNsw ' Lz critical slowing down, z � 2.Nsp ' Ld # spins per sweept1sp ' Ld if every spin interacts with every other spintrelax ' L2d+z :
Cluster simulation reduces critical slowing down

Even larger reduction is possible!
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Algorithm for FM Ising model with long-range interactions:

Cluster formation is percolation process

Probability to include an interacting neighbor sj of spin si in cluster isÆsi;sj (1� e�Kij )
Usual procedure: run over all neighbors sj and check ifsi = sj AND R < 1� e�Kij
For small K probability is small: procedure inefficient.

Better procedure: E. Luijten and H.B., Int. J. Mod. Phys. C6 359 (1995):

Neighbor selection in 2 rounds:

1. select candidate with probability pi;j � 1� e�Kij

2. accept in cluster with probability Æsi;sj
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For step 1, transform probabilities as

Pi;j � pi;j j�1Yk=1(1� pi;k) ;
that sj is the first neighbor that is selected by step 1.

Thus, if N
Xm=1Pi;m > R

no neigbor spin is included, and ifj�1
Xm=1Pi;m < R < j

Xm=1Pi;m ;

then, if si = sj , sj is included in the cluster.

If j < N , work remains.
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The probability that sl is the next neighbor that is selected by step 1, ispi;l l�1

Yk=j+1(1� pi;k) = Pi;lj
Yk=1(1� pi;k) ;

Thus, draw another R and check for sl with j < l � N :l�1

Xm=1Pi;m < R j
Yk=1(1� pi;k) < l

Xm=1Pi;m ;

This finds next neighbor sl selected by step 1.

And so on.
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Remarks:

1. The Pi;j can be rewritten ~P (~ri � ~rj), so can the partial sums: only N numbers.

2. Same for
Qjk=1(1� pi;k)

3. These 2N numbers can be stored in a look-up table.

Result: time trelax needed to generate indepent configuration

reduces roughly from order L2d+2 to order Ld !
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Calculations for following systems:
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Theory due to:

Fisher, Ma and Nickel, Phys. Rev. Lett. 29, 917 (1972),

J. Sak, Phys. Rev. B 8, 281 (1973),

Gusmão and Theumann, Phys. Rev. B 28, 6545 (1983).
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Comparison with Monte Carlo results:

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 0  0.5  1  1.5  2  2.5  3

m
ag

n
et

ic
 e

x
p

o
n

en
t

decay parameter σ

y h

∞

d=1

d=2

d=3

. – p.15/28



3. The long-range Potts model

Equivalent-neighbor interactions in two dimensions:H = �Xi;j K(j~ri � ~rj j)Æsisj
wheresk = 1; 2; : : : ; q are q-state Potts spinsK(r) = K�(R� r): equivalent-neighbor model

For nn model, critical exponents depend “continuously” on q.

What happens when the range R increases?
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q = 2: RG flow displays MF-Ising crossover

Knn
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Mean-field limit R!1 exactly solvable

1. q < 2: continuous transition, � = 1.

2. q = 2: continuous transition, � = 2.

3. q > 2: first-order transition.

For R <1, MC simulations:

Parameters Sampled quantitiesR range of interactions �i density of variables in state iq number of Potts states n number of clusters in configurationL system size j size of j-th clusterK strength of couplings
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Squared magnetization follows as

hm2i = 1q � 1 q�1

Xi=1 q

Xj=i+1h(�i � �j)2i
which can, for integers q > 1, be expressed in terms of cluster sizes:hm2i = * n

Xi=1 2i+
and fourth moment of m ishm4i = q + 1q � 1 * n

Xi=1 2i!2+� 2q � 1 * n

Xi=1 4i+
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Then form Binder ratio Q � hm2i2hm2i4
which, near a critical point K = K, behaves asQ ' Q + a1(K �K)Lyt + bLyi + � � �
where Q is a universal constantyt > 0 is the temperature exponentyi < 0 is the irrelevant exponent

. – p.20/28



Example for q = 3, R = p2 (z = 8 equivalent neighbors)
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Differentiation of scaling formula for Q:dQdK ˛˛˛˛K=K = Lyt(a1 + Lyi + � � � ) ;
where a1 is the leading amplitude.

Other contributions relatively unimportant for L!1.

Data analysis uses quantityln(dQ=dK)lnL = yt + ln a1 + (=a1)Lyi + � � �lnL
which will reveal yt for sufficiently large L.
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q = 3:
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q = 4:
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Interpretation for q = 3:

For z�<80 convergence to yt = 6=5 for critical q = 3 Potts model;

for z � 80 convergence to yt = 12=7 for tricritical q = 3 Potts model;

for z�>80 convergence to yt = 2 for first-order transition.

Interpretation for q = 4:

For z�<20 convergence to yt = 3=2 for critical q = 4 Potts model;

for z�>20 convergence to yt = 2 for first-order transition.

Conclusion:

MF to short-range crossover essentially different from Ising case.
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RG and phase diagram for q = 3
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RG and phase diagram for q = 4
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Conclusions

� Efficient simulations of long-range models

� 2 < q � 4��
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Conclusions

� Efficient simulations of long-range models� Tricriticality and first order transitions in 2 < q � 4 Potts models� Applications to neural networks, spin glasses� Applications to dipolar and ionic systems
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