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1. Universality and range of interaction

C XX |TC - T|—O’, y
Critical exponents: e.g., Mspont o< |Te —T|?,
X < [Te =T|77,

occur in classes.
Renormalization theory:
universality classes determined by

1. symmetry and nature of order parameter
2. dimensionality
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Ising models with variable range:

H == K(|F; — 7|)sis;
i,J
where

‘H specifies energy

z, 7, ... label lattice sites

K (r) is coupling for sites at distance r
s; = *1 are Ising variables

Two ways to vary range of interaction

1. K(r)=K6(R—r) equivalent-neighbor model
2. K(r) = Kr—(d+9)  power-law decay with distance

Theories available!
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Theory for models with power-law decay of interaction:

M.E. Fisher, S.-k. Ma and B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972).
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2. Simulation of long-range models

Accurate numerical tests of theory took over 20 years
Numerical verification by Metropolis method almost impossible
Time needed to generate independent configuration:

trelax = Nsw Nsptlsp

with

Nsw ~ L7 critical slowing down, z ~ 2.
Ngp ~ L% # spins per sweep
t1sp ~ L% if every spin interacts with every other spin

L2d—|—z

trelax =~

Cluster simulation reduces critical slowing down
Even larger reduction is possible!
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Algorithm for FM Ising model with long-range interactions:

Cluster formation is percolation process
Probability to include an interacting neighbor s; of spin s; in cluster is

58i,8j (1-— e_Kij)
Usual procedure: run over all neighbors s; and check if
si=s8; AND R<1-— e Kij

For small K probability is small: procedure inefficient.

Better procedure: E. Luijten and H.B., Int. J. Mod. Phys. C6 359 (1995):
Neighbor selection in 2 rounds:

1. select candidate with probability p; ; =1 — e i
2. accept in cluster with probability 5Si,3j

.~ p.9/28



For step 1, transform probabilities as

71—1
P; i = pi; H(1 —Dik),
k=1

that s; is the first neighbor that is selected by step 1.

Thus, if
N
> Pim > B
m=1
no neigbor spin is included, and if
J—1 J
Y Pim <R< > Pim,
m=1 m=1
then, if s; = s;, s; is included in the cluster.

If 7 < N, work remains.
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The probability that s; is the next neighbor that is selected by step 1, is

P;

-1
pig | Q—pik) = — ,
= L1
]- — DPi,k

Thus, draw another R and check for s; with j < 1 < N:

I—1 j l
D> Pim <R[ =pir) < D Pim,
m=1 k=1 m=1

This finds next neighbor s; selected by step 1.

And so on.
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Remarks:

1. The P; ; can be rewritten P(7; — 7;), so can the partial sums: only N numbers.

2. Same for [T/ _, (1 — pi.x)

3. These 2N numbers can be stored in a look-up table.

Result: time t..1.x Needed to generate indepent configuration
reduces roughly from order L29+2 to order L¢ |
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Theory due to:

Fisher, Ma and Nickel, Phys. Rev. Lett. 29, 917 (1972),
J. Sak, Phys. Rev. B 8, 281 (1973),

Gusmao and Theumann, Phys. Rev. B 28, 6545 (1983).
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Comparison with Monte Carlo results:
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3. The long-range Potts model

Equivalent-neighbor interactions in two dimensions:
H=- ZK(Wz - Fj|)58z‘8j
1,J
where

s, =1, 2,...,q are g-state Potts spins
K(r) = KO6(R — r): equivalent-neighbor model

For nn model, critical exponents depend “continuously” on q.

What happens when the range R increases?

.—p.16/28



q = 2: RG flow displays MF-Ising crossover
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SR

Mean-field limit R — oo exactly solvable

1. ¢ < 2: continuous transition, 5 = 1.
2. ¢ = 2: continuous transition, g = 2.
3. g > 2: first-order transition.

For R < oo, MC simulations:

Parameters Sampled quantities
range of interactions pi; density of variables in state 1
number of Potts states n. nhumber of clusters in configuration
system size c; size of j-th cluster

strength of couplings
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Squared magnetization follows as

(m Z Z _PJ

q_lz 1 9=2:4+1

which can, for integers ¢ > 1, be expressed in terms of cluster sizes:

(m?) = <Z2>
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Then form Binder ratio
(m?)?

(m?)

Q

which, near a critical point K = K., behaves as
Q:Qc—l—al(K—Kc)Lyt + bLY%i + ...

where

Qe is a universal constant
y+ > 0 is the temperature exponent
y; < 0 isthe irrelevant exponent
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Example forg = 3, R =+/2 (z = 8 equivalent neighbors)
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system sizes L = 6, 9, 12, 15, 18, 21, 24, 30, 36, 42 and 48.
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Differentiation of scaling formula for Q:

aQ

— LYt LYi 4 ...),
aK | _rc. (a1 + ¢ +--0)

where a; is the leading amplitude.
Other contributions relatively unimportant for . — oo.

Data analysis uses quantity

In(dQ/dK) _ ~ Inai 4 (c/ar)L¥ + -

In L — Y In L

which will reveal y; for sufficiently large L.
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In (dQ/dK)/InL

Results (from bottom to top) for z = 4, 8,

1/InL

12, 20, 28, 36, 48, 56, 68, 80, 100 and 120.
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Interpretation for ¢ = 3:

For <80 convergence to y; = 6/5 for critical ¢ = 3 Potts model;
for z =~ 80 convergence to y. = 12/7 for tricritical ¢ = 3 Potts model;
for 280 convergence to y; = 2 for first-order transition.

Interpretation for g = 4:

For <20 convergence to y; = 3/2 for critical ¢ = 4 Potts model;
for 220 convergence to y; = 2 for first-order transition.

Conclusion:

MF to short-range crossover essentially different from Ising case.
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RG and phase diagram for ¢ = 3

KIlIl .
crltlcaq
K
. <—tricritical FP
IZIF FP .-
0 & 5
0 1/R

.- p.26/28



RG and phase diagram for ¢ = 4
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Conclusions

Efficient simulations of long-range models
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Conclusions

Efficient simulations of long-range models
Tricriticality and first order transitions in 2 < ¢ < 4 Potts models
Applications to neural networks, spin glasses

Applications to dipolar and ionic systems
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