PARALLEL TEMPERING CLUSTER ALGORITHM FOR COMPUTER SIMULATIONS OF CRITICAL PHENOMENA

Elmar Bittner, Wolfhard Janke, and Andreas Nußbaumer University Leipzig, Germany

26 – 28 July, 2010, Melbourne, Australia

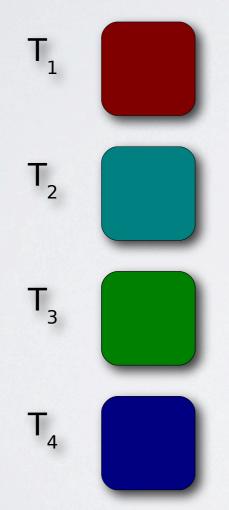
- Provides an efficient method to investigate systems with rugged free-energy landscapes, particularly at low temperatures
- *used in many disciplines:
 - biomolecules
 - bioinformatics
 - ·classical and quantum frustrated spin system
 - ·QCD
 - spin glasses
 - zeolite structure solution

- *How it works?
- ·different replica are simulated at different temperatures
- ·regular intervals an attempt is made to exchange the replica
- •replica are exchanged via a Monte Carlo process the attempt is accepted with a probability

$$P_{\text{PT}}(E_1, \beta_1 \to E_2, \beta_2) = \min[1, \exp(\Delta \beta \Delta E)]$$

with
$$\Delta \beta = \beta_2 - \beta_1$$
 and $\Delta E = E_2 - E_1$

*How it works?



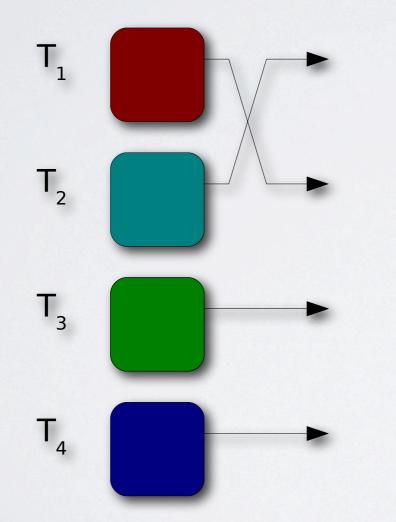
T₁

T₂

T₃

T₄

*How it works?

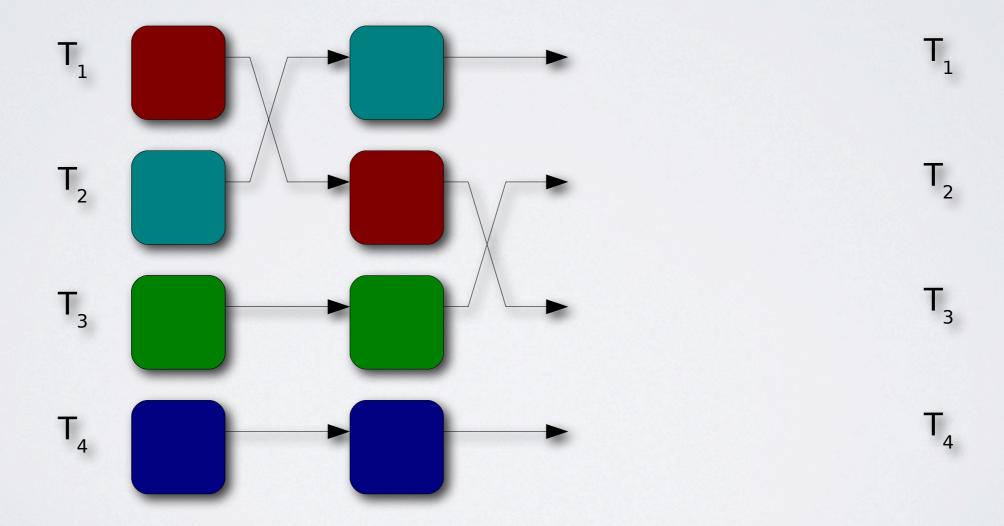


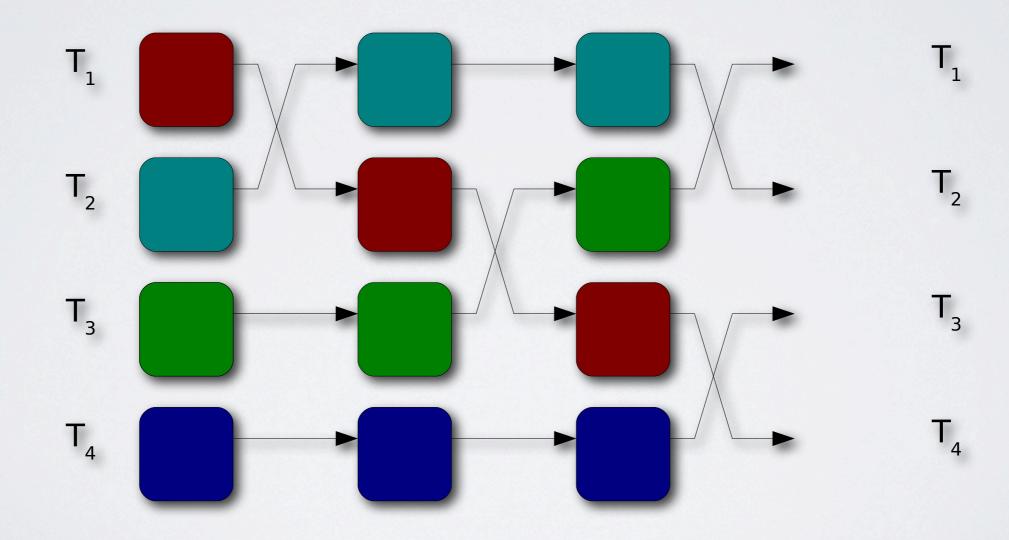
T₁

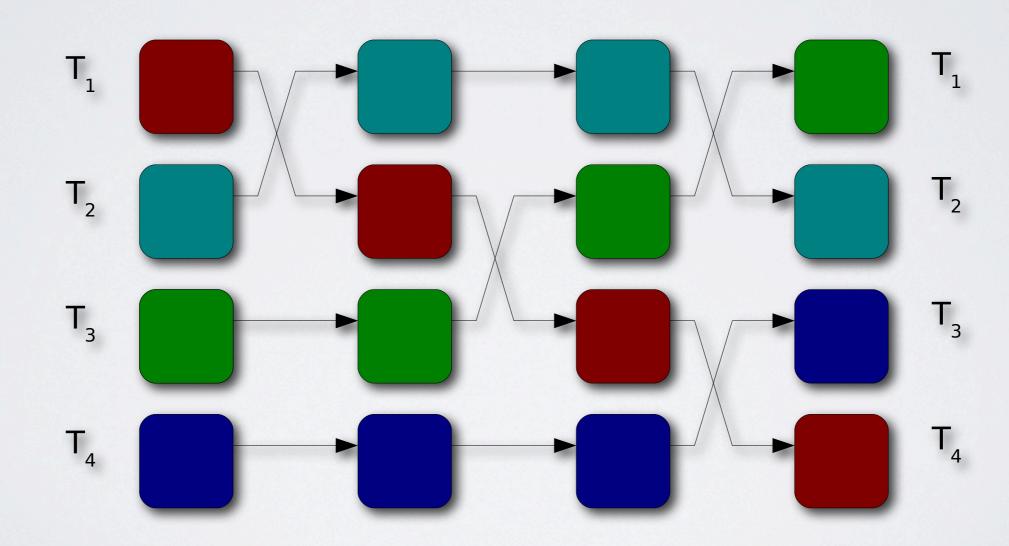
T₂

T₃

T₄







$$T_1$$
 T_1
 $P_{\mathrm{PT}}(E_1,eta_1 o E_2,eta_2)=\min[1,\exp(\Deltaeta\Delta E)]$
 T_2

An efficient selection of the temperature intervals for PT simulations is still an open problem.

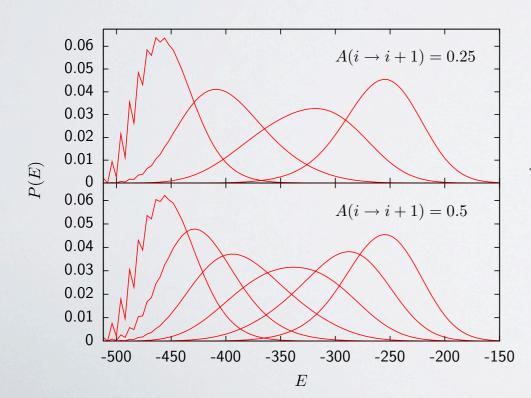
Several strategies have been proposed:

- •based on the assumption of constant overlap between the replica
- ·based on the maximum flow in the temperature space

Following the concept of constant acceptance rate between replica:

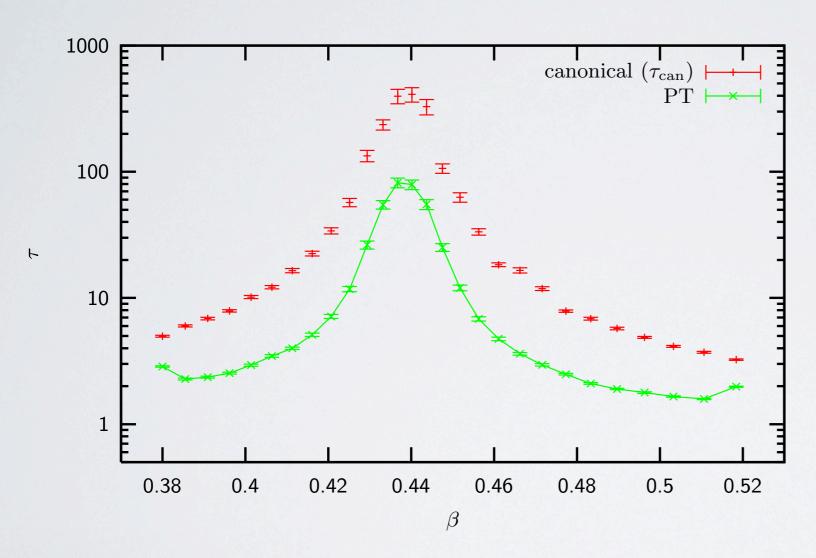
$$A(1 \to 2) = \sum_{E_1, E_2} P_{\beta_1}(E_1) P_{\beta_2}(E_2) P_{\text{PT}}(E_1, \beta_1 \to E_2, \beta_2),$$

where $P_{\beta_i}(E_i)$ is the probability for replica i with β_i to have the energy E_i .



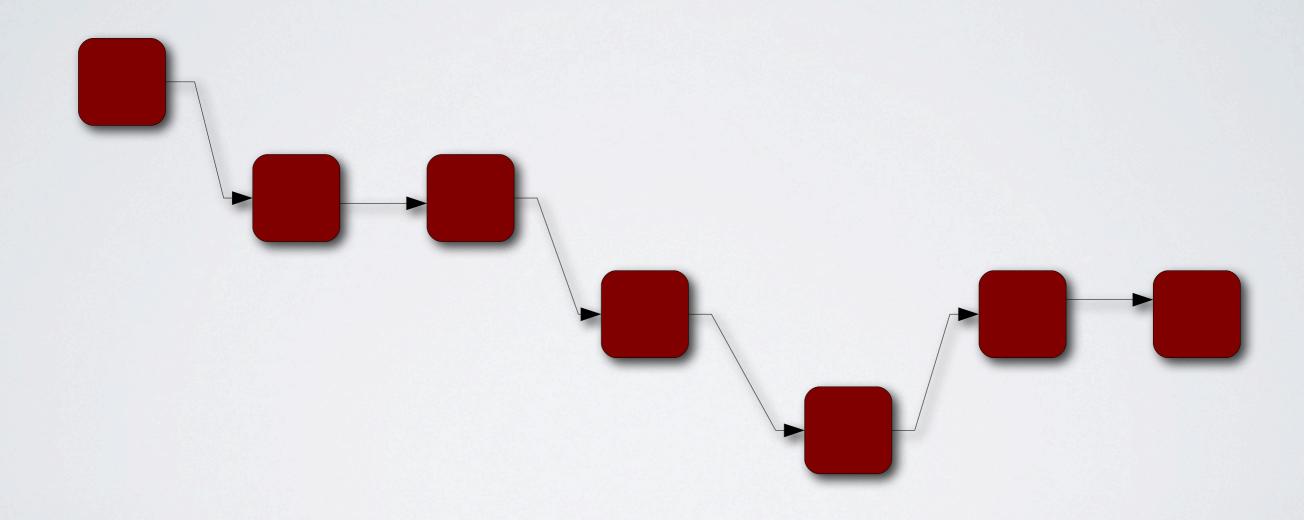
Energy distributions of the 2D Ising model with L=16 for a set of inverse temperatures starting $\beta_i=0.38$ and $A(i\rightarrow i+1)=0.25$ and 0.5.

[P. Beale, Phys. Rev. Lett. 76, 78 (1996)]

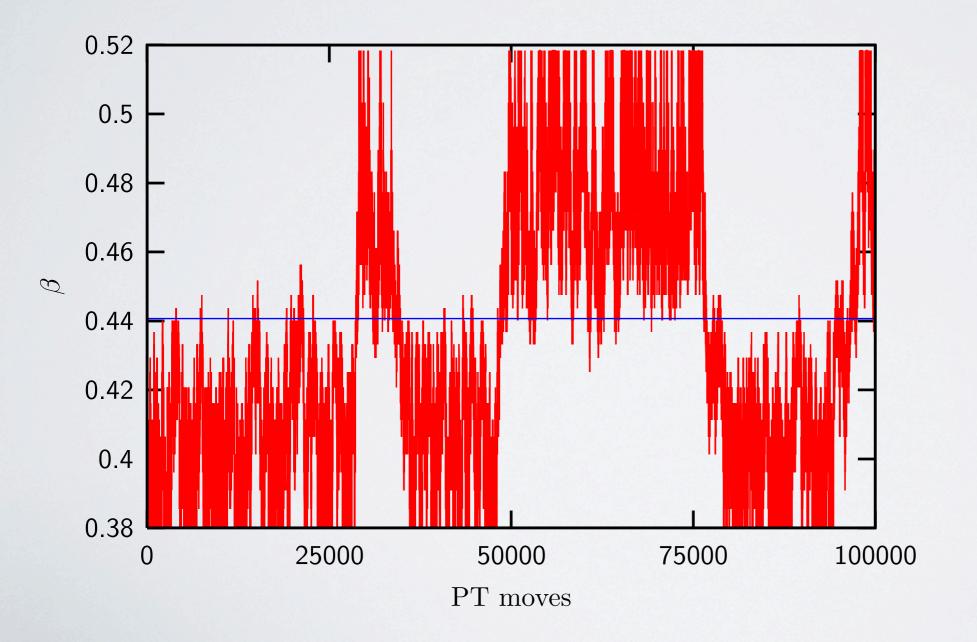


Autocorrelation times τ as a function β of for the independent simulations and the parallel tempering update scheme for the 2D Ising model (L=80).

The way through inverse temperature space of an arbitrarily chosen replica:



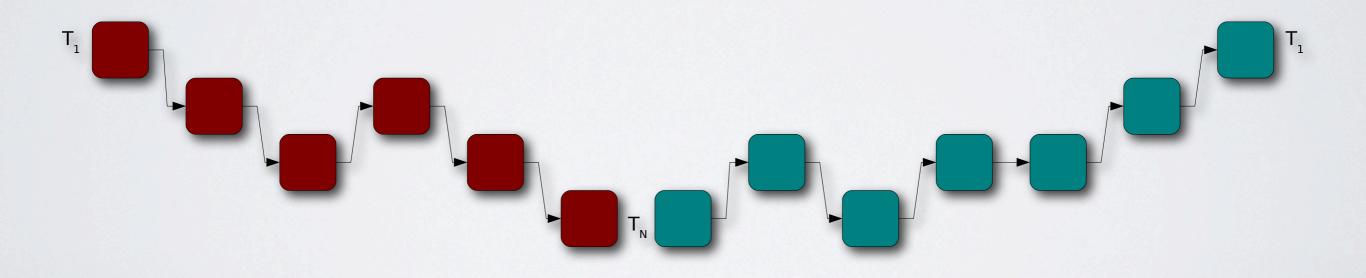
The way through inverse temperature space of an arbitrarily chosen replica:



2D Ising model (L=80)

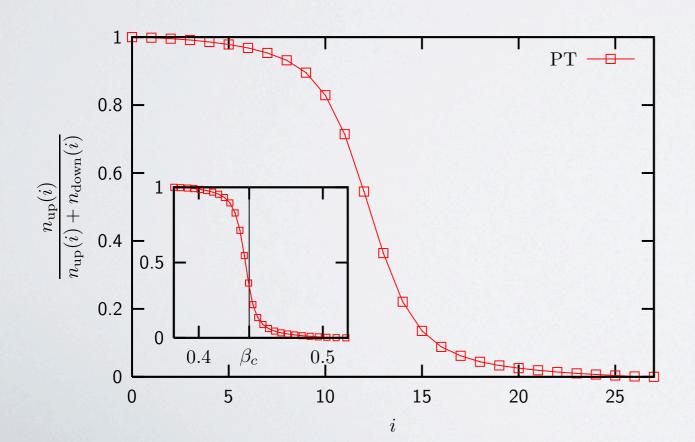
The flow η is the fraction of replica which wander from the largest β to the smallest as a function of the replica index i.

$$\eta = \frac{n_{\rm up}(i)}{n_{\rm up}(i) + n_{\rm down}(i)}$$



The flow η is the fraction of replica which wander from the largest β to the smallest as a function of the replica index i.

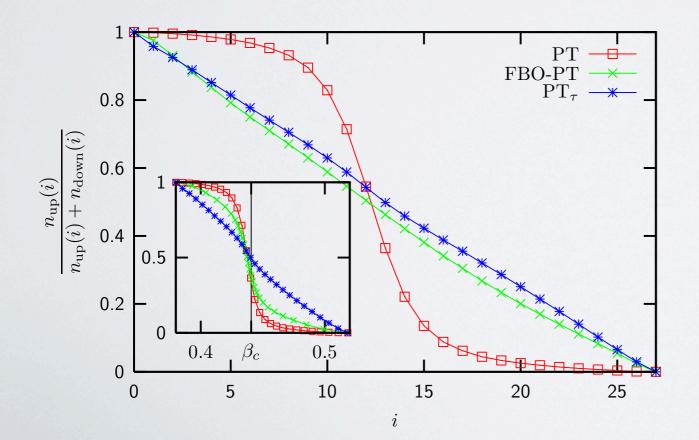
$$\eta = \frac{n_{\rm up}(i)}{n_{\rm up}(i) + n_{\rm down}(i)}$$



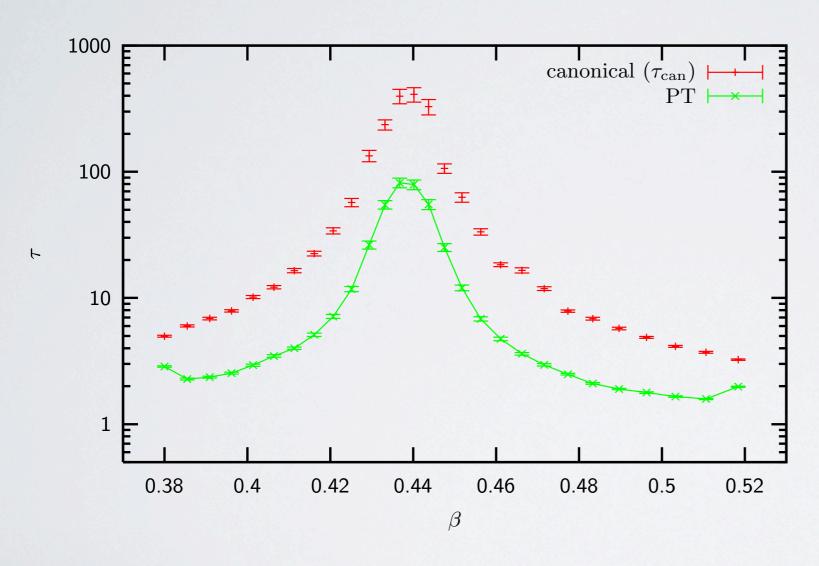
flow for the 2D Ising model (L=80)

The flow η is the fraction of replica which wander from the largest β to the smallest as a function of the replica index i.

$$\eta = \frac{n_{\rm up}(i)}{n_{\rm up}(i) + n_{\rm down}(i)}$$

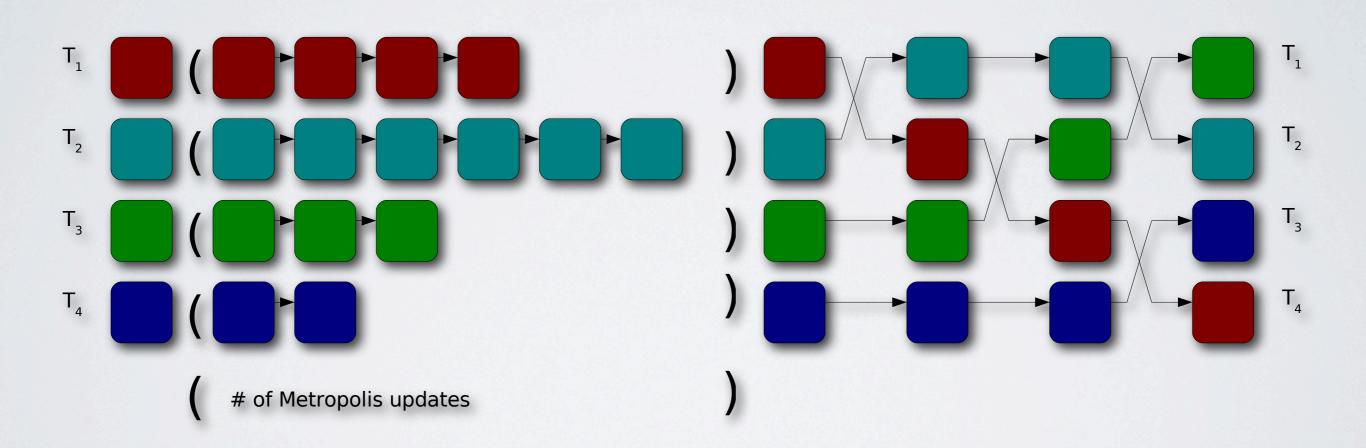


flow for the 2D Ising model (L=80)

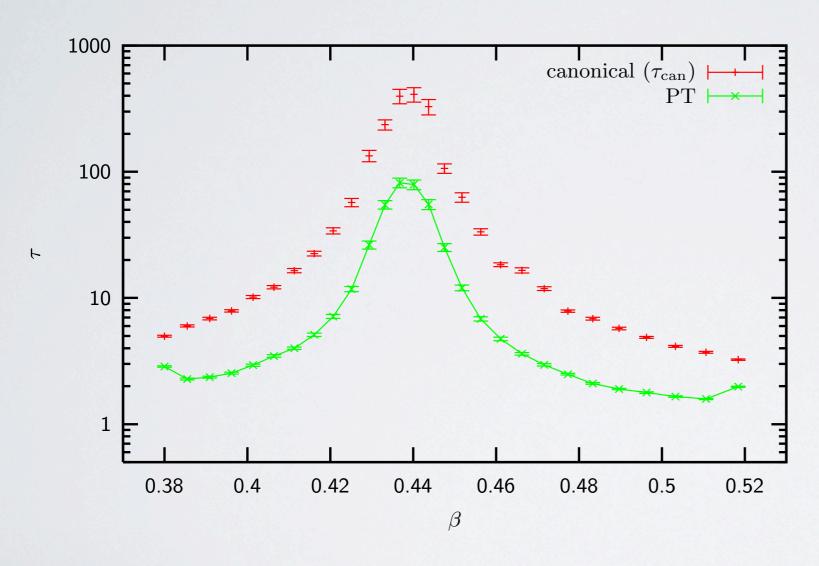


Autocorrelation times τ as a function β of for the independent simulations and the parallel tempering update scheme for the 2D Ising model (L=80).

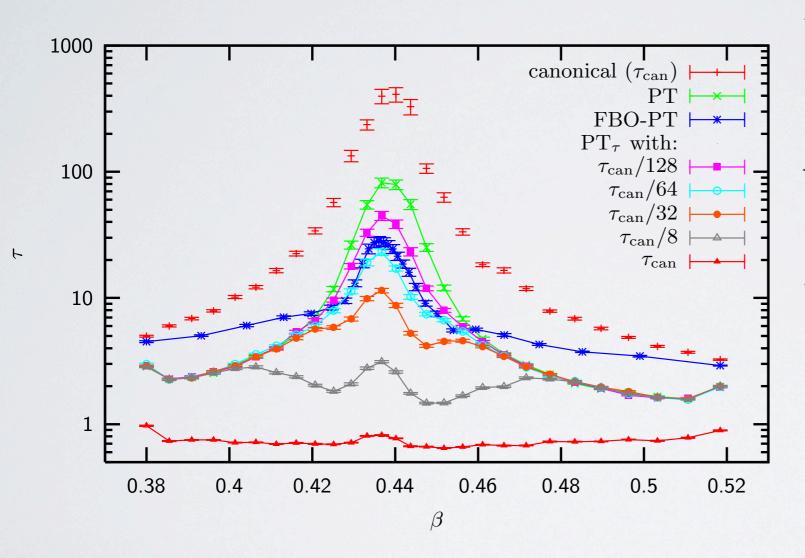
Improved parallel tempering update scheme



$$N_{\rm local}(\beta) \propto \tau_{\rm can}(\beta)$$



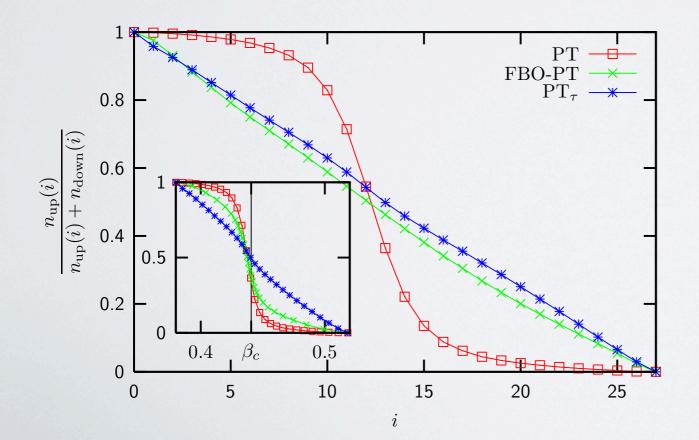
Autocorrelation times τ as a function β of for the independent simulations and the parallel tempering update scheme for the 2D Ising model (L=80).



Autocorrelation times τ as a function β of for the independent simulations, the parallel tempering update scheme, the feedback-optimized parallel tempering method, and the improved parallel tempering update scheme for the 2D Ising model(L = 80).

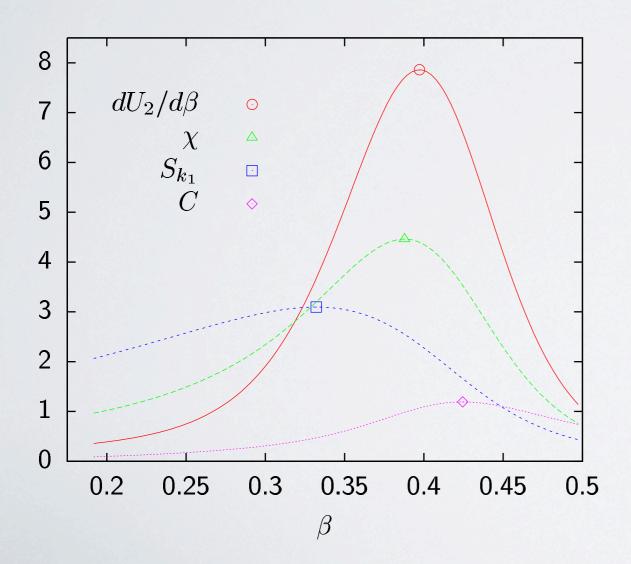
The flow η is the fraction of replica which wander from the largest β to the smallest as a function of the replica index i.

$$\eta = \frac{n_{\rm up}(i)}{n_{\rm up}(i) + n_{\rm down}(i)}$$



flow for the 2D Ising model (L=80)

*cover the complete desired "critical" temperature range



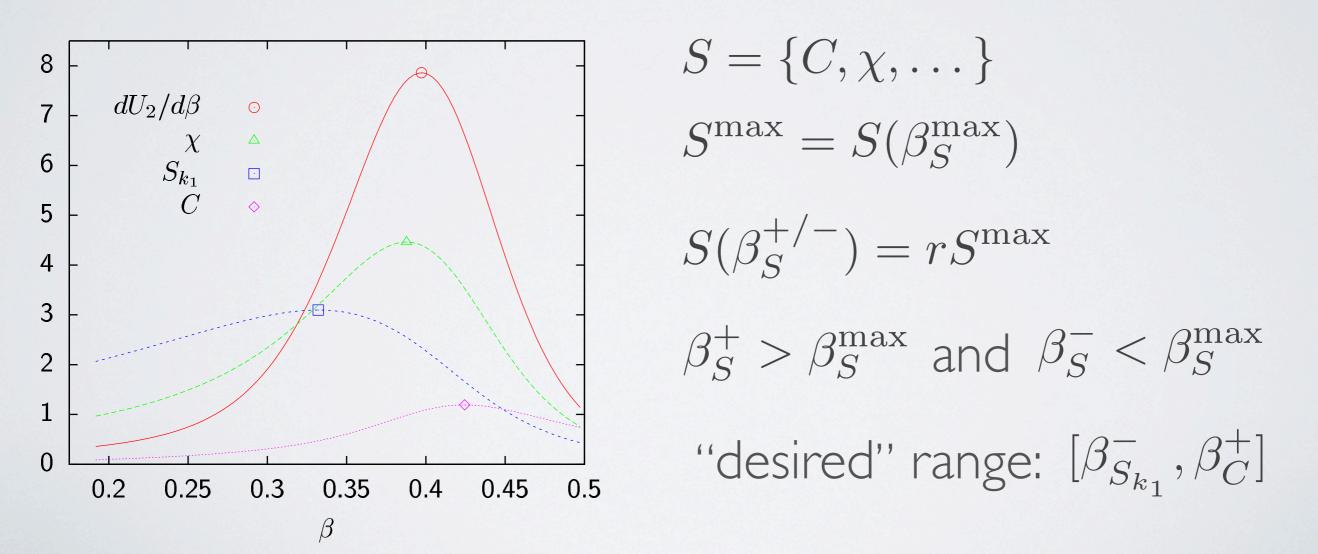
$$C(\beta) = \beta^2 V(\langle e^2 \rangle - \langle e \rangle^2)$$

$$\chi(\beta) = \beta V(\langle m^2 \rangle - \langle |m| \rangle^2)$$

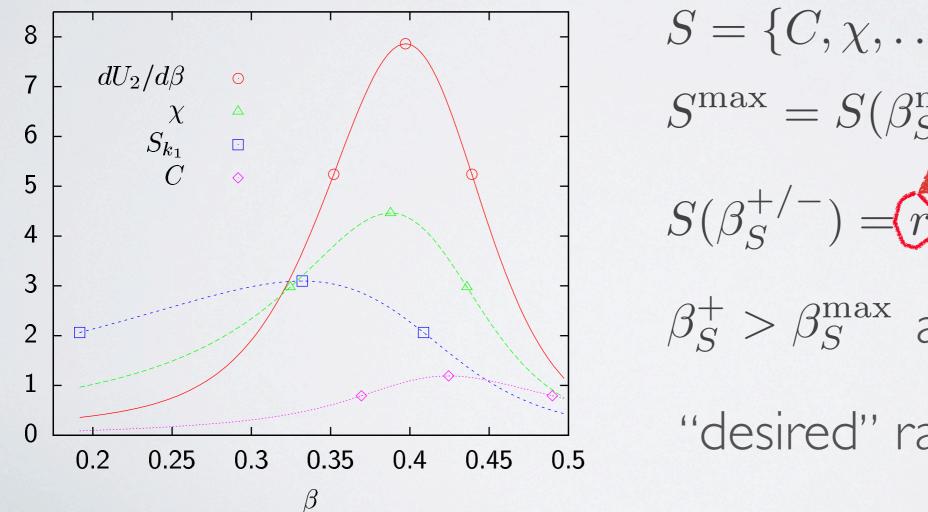
$$U_{2k}(\beta) = 1 - \langle m^{2k} \rangle / 3 \langle |m|^k \rangle^2$$

$$\cdots$$

*cover the complete desired "critical" temperature range



*cover the complete desired "critical" temperature range



$$S = \{C, \chi, \dots\}$$

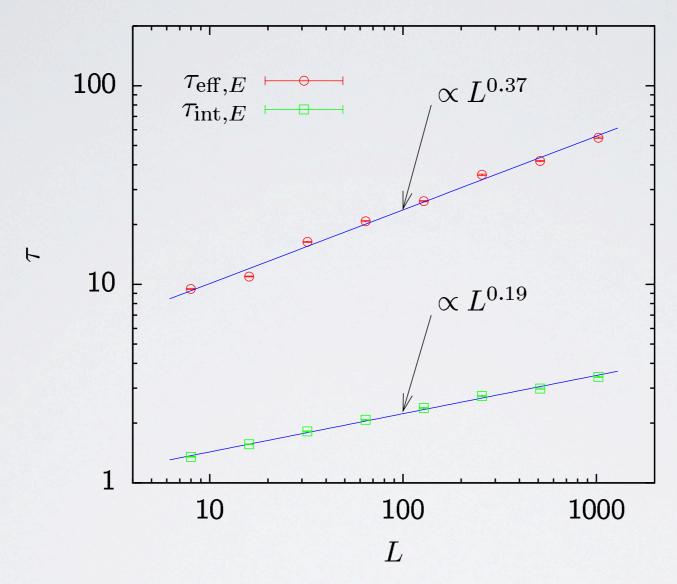
$$S^{\max} = S(\beta_S^{\max}) \qquad r = \frac{2}{3}$$

$$S(\beta_S^{+/-}) = S^{\max}$$

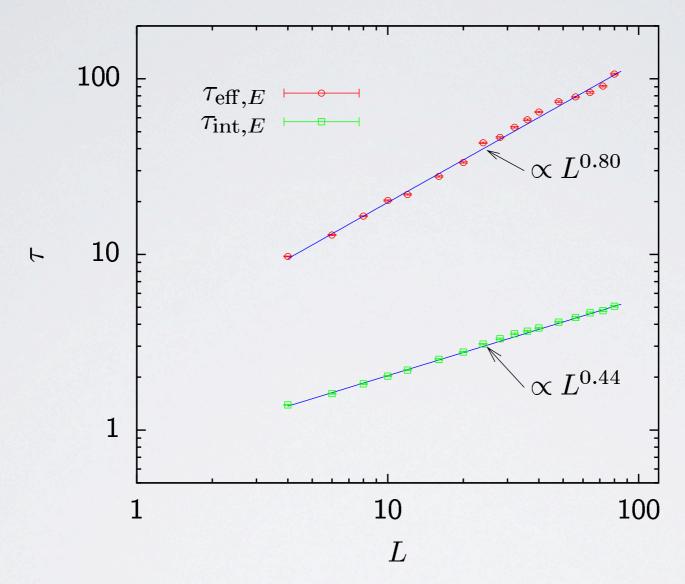
$$\beta_S^{+} > \beta_S^{\max} \text{ and } \beta_S^{-} < \beta_S^{\max}$$
"desired" range: $[\beta_{S_{k_1}}^{-}, \beta_C^{+}]$

general recipe:

- I. compute the simulation temperatures of the replica equidistant in β ,
- 2. perform several hundred thermalization sweeps and a short measurement run,
- 3. check the histogram overlap between adjacent replica: if the overlap is too small, add on or two replica and goto step 1, else go on,
- 4. use multi-histogram reweighting to determine β_S^- and β_S^+ for all observables S,
- 5. leading to the temperature interval $[\beta_{\min}^-, \beta_{\max}^+] = [\min_S \{\beta_S^-\}, \max_S \{\beta_S^+\}],$
- 6. start with $\beta^- = \beta^-_{\min}$ and compute a sequence of temperatures β_i with fixed acceptance rate $A(1 \to 2)$ until $\beta_i = \beta^+ \ge \beta^+_{\max}$,
- 7. perform several hundred thermalization sweeps and a long measurement run.



Autocorrelation times $\tau_{\rm int}$ and $\tau_{\rm eff}$ for the energy of the 2D Ising model, where $\tau_{\rm eff} = N_{\rm rep} \tau_{\rm int}$ and $N_{\rm rep}$ is the number of replica.



Autocorrelation times $\tau_{\rm int}$ and $\tau_{\rm eff}$ for the energy of the 3D Ising model, where $\tau_{\rm eff}=N_{\rm rep}\tau_{\rm int}$ and $N_{\rm rep}$ is the number of replica.

Summary

What can we do to improve the parallel tempering algorithm?

- ·use a constant acceptance rate between the replica
- ·keep the temperatures fixed
- •take the temperature dependence of autocorrelation times into account
- ·or use the replica-exchange cluster algorithm

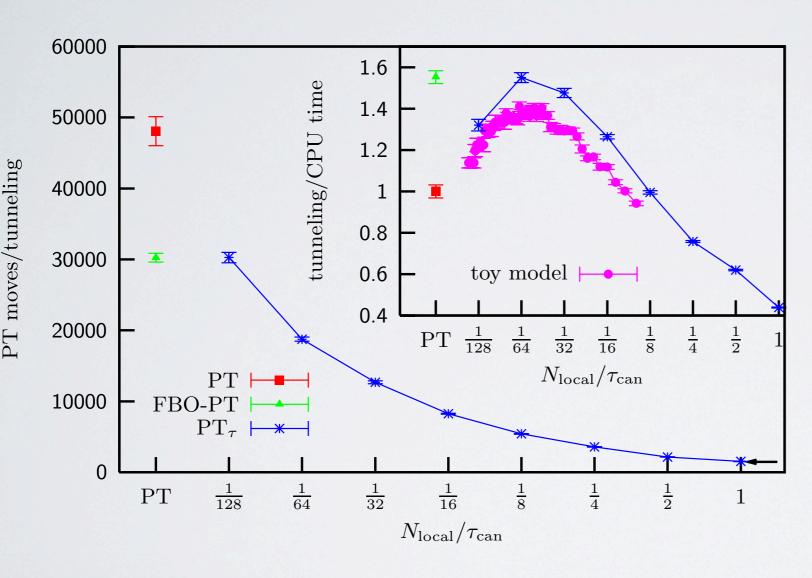
Acknowledgements

Supported by

- •Deutscher Akademischer Austausch Dienst (DAAD)
- •Deutsche Forschungsgemeinschaft (DFG)
- •EU-RTN Network "ENRAGE"

THANKYOU!

Sweeps per tunneling



Sweeps per tunneling as a function of $N_{\rm local}$ for the 2D Ising model (L=80).