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Parallel flempering

+ provides an efficient method to investigate systems with
rugged free-energy landscapes, particularly at low
= RiPEratures

+used In many disciplines:
‘bilomolecules
*bioinformatics
-classical and quantum frustrated spin system
L@CD
*SpIN glasses
2 clite structure solution



Parallel flempering

*How It works!?

-different replica are simulated at different temperatures
‘regular intervals an attempt I1s made to exchange the replica

‘replica are exchanged via a Monte Carlo process the attempt
s accepted with a probability

PPT(E17 61 S EQ, 62) — min[l, exp(AﬁAE)]

with Aﬁ:62—61 and AE:EQ—El
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Parallel flempering

Ppr(E1, 81 — Eo,32) = min|l,exp(ABAE)

SE I Elentselection of the temperatlre IntervalsTor=iE
simulations is still an open problem.

Several strategies have been proposed:

based on the assumption of constant overlap between the
replica

based on the maximum flow In the temperature space



Parallel flempering

Following the concept of constant acceptance rate between
replica:

A(1—2)= )Y  Ps (E1)Ps,(E2)Per(E1, B — Ea, B2),
I T

where Pg, (E;)is the probability for replica ¢ with 5;to have the
shErg s
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Autocorrelation times
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Flow

The way through inverse temperature space of an arprtrarily
chosen replica:
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Flow

The way through inverse temperature space of an arprtrarily
chosen replica:
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Flow

The flown is the fraction of replica which wander from the
largest B to the smallest as a function of the replica index <.

Nup (%)

’]’}:

Tup (%) + Ndown (?)

&R 20 aber, S. [rebst, D.A. Huse, and M. Troyer, J. Stat. Mech. PO3018 (2006)]
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Improved parallel tempering update scheme

*How It works!?
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Nlocal (6) X Tcan (ﬁ)
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Autocorrelation times
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Flow
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Temperature Interval
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Be@ =ihe complete desired critical” temperaturedfse
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Temperature Interval

Be@ =ihe complete desired critical” temperaturedfse
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Temperature Interval

oeneral recipe:

.
ki

.

compute the simulation temperatures of the replica equidistant ing,
perform several hundred thermalization sweeps and a short
Rl dstirernent run,

. check the histogram overlap between adjacent replica: If the overlap

s too small, add on or two replica and goto step |, else go on,

. use multi-histogram reweighting to determine 35 and 84 for all

observables S,

. leading to the temperature interval [Bgin: Bnax] = [min{fs}, mgX{ﬂ§ 1,
6.

start with 6~ = B,;,and compute a sequence of temperatures 3; with
[ixed acceptance rate A(1 — 2) until 8; = 87 > 82

max’

perform several hundred thermalization sweeps and a long
RliEdstirement run.



Autocorrelation times
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Autocorrelation times
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Summary

What can we do to improve the parallel tempering algorithm?

*use a constant acceptance rate between the replica
JE = Riale temperatlres Tixed
-take the temperature dependence of autocorrelation times

into account
*or use the replica-exchange cluster algorithm

EB, A. Nul3baumer; and W. Janke, Phys. Rev. Lett. |01 (2008) 130603
EB and WV. Janke, in preparation
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PT moves/tunneling
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