Hierarchical Subphase Transitions in Molecular First Order Nucleation Processes

Michael Bachmann

Soft Matter Systems Research Group, Forschungszentrum Jülich

Workshop "Monte Carlo Algorithms in Statistical Physics", Melbourne, 26–28 July 2010

0. Overview

1. Introduction

- Small systems Temperature Microcanonical analysis
- Multicanonical Monte Carlo method

2. Aggregation of Polymers

- Coarse-grained modeling of protein aggregation
- Canonical and microcanonical analysis Hierarchy of subphases
- Homopolymer aggregation

3. Adsorption of Polymers at Substrates

• Hybrid-system modeling • Flat substrates • Nanowires

Exemplified small molecular system: Proteins

- Heterogeneous linear chains of 40...3000 amino acids
- Geometric structure \Leftrightarrow Biological function
- Structure formation \Leftrightarrow Structural phase transition?
- But: no thermodynamic limit, no scaling, no transition points
- Finite-size, surface, and disorder effects

Definition of temperature

• microcanonical:

$$T^{
m micro}_{
m system}(E) = \left(rac{\partial S^{
m micro}(E)}{\partial E}
ight)^{-1}, \; S^{
m micro}(E) = k_B \ln \, g(E)$$

• canonical:

$$T_{
m heatbath}\equiv T_{
m system}^{
m can}(\langle E
angle) = \left(rac{\partial S^{
m can}(\langle E
angle)}{\partial \langle E
angle}
ight)_{N,V}^{-1},$$

$$S^{\mathsf{can}}(\langle E
angle) = rac{\langle E
angle}{T^{\mathsf{can}}_{\mathsf{system}}(\langle E
angle)} - k_B \ln Z(T^{\mathsf{can}}_{\mathsf{system}}(\langle E
angle))$$

thermodynamic limit: $T_{\text{system}}^{\text{micro}} = T_{\text{system}}^{\text{can}}$ small systems: $T_{\text{system}}^{\text{micro}} \neq T_{\text{system}}^{\text{can}}$; deviation due to finite-size effects

Example: Two-state protein folding

M.B., Phys. Proc. 3, 1387 (2010).

Microcanonical analysis

- Central quantity: density of states g(E)
- Microcanonical entropy: $S(E) = k_B \ln g(E)$
- Caloric temperature: $T(E) = [\partial S(E)/\partial E]^{-1}$

Example: Aggregation of two small (hetero)polymers:

- Convex region: $E_{
 m agg} < E < E_{
 m frag}$
- Phase coexistence, latent heat $\Delta Q \neq 0$
- Gibbs construction $\mathcal{H}_S(E) = S(E_{
 m agg}) + E/T_{
 m agg}$
- Transition temperature $T_{\text{agg}} = [\partial \mathcal{H}_S(E) / \partial E]^{-1}$
- Entropy reduction $\Delta S = \mathcal{H}_S(E_{ ext{sep}}) S(E_{ ext{sep}})$

Estimating the density of states by multicanonical sampling

Density of states: g(E)

- \Rightarrow Microcanonical entropy: $S(E) = k_B \ln g(E)$
- \Rightarrow Canonical partition function: $Z(T) = \int_{E_{\min}}^{\infty} dE g(E) e^{-E/k_B T}$

Multicanonical computer simulation Canonical partition sum $[\vec{X} = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N)]$:

$$Z = \int \mathcal{D} \mathrm{X} \exp \left[-S(E(ec{X}))/k_B
ight] W^{-1}(E(ec{X}))$$

with $S(E) = E/T - k_B \log W(E)$ and weights $W(E) \sim 1/P_{can}(E)$; Sampling with transition probability

$$w(ec{X}
ightarrow ec{X'}) = \min\left[e^{[S(E(ec{X})) - S(E(ec{X'}))]/k_B}, 1
ight]$$

- \implies Random walk in energy space
- ⇒ "Flat Histogram": Uniform density of energetic states

Technical difficulty: Recursive estimation of the weights W(E)

[B. A. Berg, T. Neuhaus, PLB 267, 249 (1991); PRL 68, 9 (1992)]

Toxicity of misfolded proteins: Alzheimer's Disease (amyloid hypothesis)

Folding of peptide $A\beta_{1-42}$

Local unfolding, aggregation

Fusion into neural cell membrane, pore formation

> **Degeneration of neurons** by Ca^{2+} ions

[H. Lin et al., FASEB J. 15, 2433 (2001); A. Quist et al., PNAS 102, 10427 (2005); H. A. Lashuel and P. T. Lansbury jr., Quart. Rev. Biophys. 39, 167 (2006); S. Tomaselli et al., ChemBioChem 7, 257 (2006); S. Mitternacht and A. Irbäck, Proteins 71, 207 (2008)]

8

Coarse-grained model for the aggregation of proteins

- Heteropolymer chains of a sequence of amino acids (disorder!)
- Simple hydrophobic-polar protein aggregation model:

*V*_{intra}: interaction between non-bonded amino acids of the same chain

V_{inter}: interaction between amino acids of different chains

V_{bend}: bending energy

Bond length is constant (stiff bonds)

Canonical analysis for systems of 3 and 4 chains (13 monomers each)

Microcanonical analysis (2 to 4 chains)

- Δs decreases with system size (ightarrow finite-size effect)
- Δq (latent heat) does not vanish (ightarrow first-order transition)
- "Oscillations" of Δs for 3 & 4 chains indicate subphase transitions

C. Junghans, M.B., W. Janke, PRL 97, 218103 (2006); JCP 128, 218103 (2008).

Hierarchy of subphase transitions (4 chains)

C. Junghans, W. Janke, M.B., preprint (2010).

Homopolymer aggregation

• Chains of identical monomers

0.5

- Fluctuations about Maxwell line
- Oscillations \Leftrightarrow Hierarchies

 $4 \times A_{13}$ $2 \times A_{13}$ $3 \times A_{13}$ $4 \times A_{13}$ $2 \times A_{13}$ 0.02 $3 \times A_{13}$ $\Delta s(e)$ $4 \times A_{13}$ 0.01 0.00 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.4 -0.6 e

 $3 \times A_{13}$

 $2 \times A_{13}$

C. Junghans, M.B., W. Janke, EPL 87, 40002 (2009).

Flexible polymer interacting with continuous substrate

$$E = 4\sum_{i=1}^{N-2} \sum_{j=i+2}^{N} \left(r_{ij}^{-12} - r_{ij}^{-6}\right) + \frac{1}{4}\sum_{i=1}^{N-2} \left[1 - \cos\left(\vartheta_{i}\right)\right] + \epsilon_{s} \sum_{i=1}^{N} \left(\frac{2}{15}z_{i}^{-9} - z_{i}^{-3}\right)$$

(Pseudo-)Phase diagram of adsorption (20mer)

M. Möddel, M.B., W. Janke, JPCB 113, 3314 (2009).

Adsorption transition AE2 \Leftrightarrow DE (20mer, $\varepsilon_s = 5$)

M. Möddel, W. Janke, M.B., PhysChemChemPhys, in print (2010).

3. Polymer Adsorption at Substrates

Polymer adsorption on a nanowire

T. Vogel, M.B., PRL 104, 198302 (2010).

3. Polymer Adsorption at Substrates

Microcanonical thermodynamics of polymer–wire adsorption

First-order character increases with increasing wire attraction strength $\varepsilon_{\rm f}$

T. Vogel, M.B., preprint (2010).

Summary and Conclusions

- Goal: Understanding mechanisms of [molecular] nucleation processes
- Tool: Microcanonical analysis
- Approach: Coarse-grained models for aggregation and adsorption transitions of homopolymers and heteropolymers
- Result: Hierarchy of structural subphase transitions; 1^{st} and 2^{nd} order like behavior \Rightarrow finite-size & surface effects
- Conclusion: Microcanonical analysis enables quantitative analysis of general features that apply to all nucleation processes

Collaborators: C. Junghans, M. Möddel, T. Vogel, W. Janke

(i) Hydrophobic-polar (HP) "united atom" C^{α} models:

C(H,H) > C(P,P) > 0 (attractive), C(H,P) < 0 (repulsive)

[lattice: K. F. Lau, K. A. Dill, Macromolecules 22, 3986 (1989); off-lattice: F. Stillinger, T. Head-Gordon, C. L. Hirshfeld, Phys. Rev. E 48, 1469 (1993)]

(ii) Self-assembly of molecules: Aggregation model

$$E = \sum_{\mu} E_{
m HP}^{(\mu)} + 4 \sum_{\mu <
u} \sum_{i_{\mu}, j_{
u}} \left[r_{i_{\mu} j_{
u}}^{-12} - C(\sigma_{i_{\mu}}, \sigma_{j_{
u}}) r_{i_{\mu} j_{
u}}^{-6}
ight]$$

Periodic boundary conditions: Box with edge lengths L

Aggregation transition: "Order parameter"

$$\Gamma^2 = rac{1}{2M^2} \sum_{\mu,
u=1}^M \left(ec{r}_{\mu}^{\, ext{COM}} - ec{r}_{
u}^{\, ext{COM}}
ight)_{ ext{per}}^2$$

• Center of mass:
$$ec{r}^{
m COM}_{\mu} = \sum_{i=1}^N ec{r}_{\mu_i}/N$$

- Definition similar to gyration radius $r_{
 m gyr}^2 = \sum_{i,j}^N (ec{r_i} ec{r_j})^2/(2N^2)$
- Statistical average: $\langle \Gamma
 angle = Z^{-1} \prod_{\mu=1}^{M} \left[\int \mathcal{D} X_{\mu} \right] \Gamma \exp(-E/k_B T)$
- Fluctuations

$$rac{d\langle\Gamma
angle}{dT}=rac{1}{k_BT^2}\left(\langle E\,\Gamma
angle-\langle E
angle\langle\Gamma
angle
ight)$$

should signalize aggregation transitions, if any!

Dependence on adsorption strength ε_s (20mer)

- Δs increases with arepsilon
- Δq increases with arepsilon

2

 ϵ_s

3

DE

DG

Dependence on box size ($N=20,\, arepsilon_s=5$)

- Δs increases with L_z
- Δq increases with L_z
- \Rightarrow Translational entropy vs. conformational entropy

Dependence on chain length N ($\varepsilon_s = 5$)

- Δs decreases with N
- Δq decreases with N

 $N \rightarrow \infty$: Second-order phase transition with firstorder signature for finite chains

M. Möddel, W. Janke, M.B., PhysChemChemPhys, in print (2010).

