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OUTLINE OF TALK

History and significance of the Ising model

Crash course in Statistical Mechanics

Three key quantites, free energy, magnetisation, susceptibility

Solution in 1 dimension

Solution in 2 dimensions (Onsager, free energy; Yang,
magnetisation)

Progress in finding the susceptibility

Concept of a differentiably finite or D-finite function. A linear
ODE with polynomial coefficients.

Direct analysis, based on correlation functions

An analysis based on n-particle contributions (Feynman-type
integrals)
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Proposed by Wilhelm Lenz 1920

Proposed as a model of ferromagnetism.

Ferromagnetism known for millenia. After the discovery of the
electron, a viable mechanism was proposed.

Magnetism is due to the electron’s spin.

Short range interaction between electrons. How do local
interactions have a global effect?

More precisely, how could short range forces lead to long-range
correlations?

The quest for solvability. Tony Guttmann
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This phenomenon is very widespread.

The order-disorder transformation in binary alloys.

The gas-liquid transition.

Co-operative behaviour is the key feature, which has led to the
widespread application of the Ising model.
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Biology e.g. Montroll and Goel

Neurology Hopfield

Genetics Majewski et al. in 2001,

Economics Sornette published Why Stock Markets Crash, in
2003, using the Ising model.

Sociology In 2001 Weidlich, published Sociodynamics
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More generally, the Ising model is relevant to any system
described by random binary variables, constrained by conditions
on the pairwise interactions. Such systems occur frequently in
the physical, biological and social sciences, and probably
atmospheric science too.

The Ising model has been the subject of about 20,000
publications.

Wilhelm Lenz in 1920, suggested to Ernst Ising (born 1900),
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Ising PhD in 1925, General Electric Company in Berlin. 1935
head of a private Jewish school near Potsdam. 1939 to
Luxembourg. He emigrated to the US in 1947, taught for a year
at a teacher’s college in N.D, since 1948 taught physics at a
small university (Bradley), in Illinois. He died in 1998.

Ising solved the model in 1-dimension, found no phase
transition, and gave an heuristic (and incorrect) argument that
there would be no phase transition in two dimensions.

Saved by order-disorder transition of binary alloys connection.
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In 1942 Lars Onsager, in a mathematical tour de force solved the
model (free-energy) in two dimensions.

It had previously been suggested that additional conditions
would be needed to “tell” atoms or molecules to behave
co-operatively.

Since then, a paradigm of systems that exhibit co-operative
behaviour.

The quest for solvability. Tony Guttmann
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STATISTICAL MECHANICS

Write down the HamiltonianH. (Energy of a configuration).

H = −J
∑
<i,j>

σi · σj + H
∑

i

σi, σi = ±1.

Then the partition function

Z(T,H) =
∑

all configs.

exp(−H/kT).

(k is Boltzmann’s const., T is temp., H is mag. field.)
The (Helmholtz) free energy F(T,H) = −kT log Z(T,H).
We need F(T,H) = limN→∞ F(T,H)/N.
All quantities follow by differentiation. These include:
The specific heat C0 = −T d2F(T,0)

dT2

The (zero-field) magnetisation m0(T) = ∂F(T,H)
∂H |H=0

The (zero-field) susceptibility χ0(T) = ∂2F(T,H)
∂H2 |H=0

The quest for solvability. Tony Guttmann
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ONE-DIMENSIONAL MODEL

A one-dimensional array of “spins" {µi, i = 1 . . .N}, “up" or
“down”, µi = ±1. The HamiltonianH of a configuration of
spins, denoted {µ}, is

H{µ} = −J
∑
〈i,j〉

µiµj + H
N∑

i=1

µi = −J
∑

i

µiµi+1 + H
N∑

i=1

µi.

∑
〈i,j〉 means a sum over nearest-neighbour pairs, J is the strength

of the interaction between adjacent spins. The second sum gives
the interaction of each spin with an external magnetic field H.

The quest for solvability. Tony Guttmann
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ONE-DIMENSIONAL MODEL

The partition function is

ZN =
∑
{µ}

exp (−βH{µ}),

where β = 1/(kBT).

We want the Helmholtz free-energy,
F/kBT = − limN→∞ 1/N log ZN .

The zero-field free energy then follows (set H=0 in the above),

the zero-field magnetisation, limH→0 ∂(−F/kT)/∂H,

and the zero-field susceptibility, limH→0 ∂
2(−F/kT)/∂H2.

The quest for solvability. Tony Guttmann
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ONE-DIMENSIONAL MODEL

In 1 dimension, impose cyclic boundary conditions, so that
µN+1 = µ1. Then symmetrise the energy function

H{µ} = −J
N∑

i=1

µiµi+1 + H
N∑

i=1

µi

= −J
N∑

i=1

µiµi+1 + H/2
N∑

i=1

(µi + µi+1).

The partition function sum
∑
{µ} can be written∑

µ1=±1
∑

µ2=±1
∑

µ3=±1 . . .
∑

µN=±1 .

The quest for solvability. Tony Guttmann
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ONE-DIMENSIONAL MODEL

The summand is

e(−βH{µ}) = e[βJ
∑N

i=1 µiµi+1+βH/2
∑N

i=1(µi+µi+1)].

Summing this over a particular value of µi is just taking a matrix
product. Indeed, consider the matrix

T =

(
e(βJ+βH) e−βJ

e−βJ e(βJ−βH)

)

Then
ZN =

∑
µ1=±1

TN = Tr(TN) = λN
1 + λN

2

When βJ > 0, λ1 > λ2, so in the TL we only consider λ1.

The quest for solvability. Tony Guttmann
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ONE-DIMENSIONAL MODEL

So to solve the 1d Ising model we need only the eigenvalues of a
2× 2 matrix

Thus

F(T,H)

−kT
=

[
βJ + log

(
coshβH +

√
sinh2 βH + exp(−4βJ)

)]
.

Thus
F(T, 0) = −kT log(2 coshβJ),

m0(T) = 0 for T > 0, and m0(T) = ±1 for T = 0.

χ0(T) = exp(2βJ)/kT.

The quest for solvability. Tony Guttmann
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sinh2 βH + exp(−4βJ)

)]
.

Thus
F(T, 0) = −kT log(2 coshβJ),
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TWO-DIMENSIONAL MODEL

In 1942 Onsager solved the two-dimensional model for the
zero-field free energy (published 1944), noting that the transfer
matrices generated a finite Lie algebra.

In 1948 he wrote down the solution for the zero-field
magnetisation on the blackboard at a conference at Cornell, and
later at IUPAP, Florence.

C. N. Yang published the first proof in 1952.

The quest for solvability. Tony Guttmann
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TWO-DIMENSIONAL MODEL

Onsager’s solution was refined by Kaufmann, who pointed out
that a Clifford algebra could be used. Kac and Ward sought a
simpler solution. Sherman pointed out a flaw. Feynman
conjectured a fix. Sherman proved Feynman’s conjecture.

Later, Schutzenberger informed Sherman that his proof extended
an identity of W. Witt on “the dimension of the linear space of
Lie elements of degree r in a free Lie algebra with k generators
over a field of characteristic zero," and made some remarks on
further extensions that might be of use in proving results in three
dimensions.

The quest for solvability. Tony Guttmann
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THE TWO-DIMENSIONAL MODEL

Let µi,j be the spin at lattice site (i, j) of a lattice of m rows and n
columns, wrapped as a cylinder. The Hamiltonian is

H{µ} = −J
∑

i,j

µi,jµi+1,j − J
∑

i,j

µi,jµi,j+1 − H
∑

i,j

µi,j

The partition function

Z =
∑
{µ}

exp(−H{µ}/kT)

can be calculated by diagonalising a 2m × 2m matrix in the limit
as m→∞.
This was Onsager’s triumphant achievement (with H set to zero).

The quest for solvability. Tony Guttmann
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TWO-DIMENSIONAL MODEL

The final result for the internal energy is relatively simple:

U = −J coth 2K
[

1 + (2 tanh2 2K − 1)
2
π

K(k1)

]
k1 = 2 sinh 2K/ cosh2 2K, K = J/kT and K(k1) is the complete
elliptic integral of the first kind.
Denote byM the magnetisation. It is zero for T > Tc and,
M = (1− s−4)1/8 for T < Tc, where s = sinh(2J/kT) .
The two-point correlation function is

C(m, n) = 〈µ0,0µm,n〉.

In terms of this two-point correlation function, the susceptibility
χ is given by

kT · χ =
∑

m

∑
n

(
C(m, n) −M2),

The quest for solvability. Tony Guttmann
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THE SUSCEPTIBILITY

No one has managed to find a closed form expression for the
susceptibility, despite strenuous efforts by many of the world’s
greatest mathematical physicists.

However, considerable progress has been made.

In 1976, Wu, McCoy, Tracy and Barouch showed that the
susceptibility can be expressed as an infinite sum of n-particle
contributions. The susceptibility is given by

kTχH(w) =
1
s
· (1− s4)

1
4
∑

n

χ̃(2n+1)(w)

where w = 1
2 s/(1 + s2) and s = sinh(2J/kT).

The n-particle contributions are given by (n− 1)-dimensional
integrals:

The quest for solvability. Tony Guttmann
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THE SUSCEPTIBILITY

χ̃(n)(w) =
1
n!
·
(n−1∏

j=1

∫ 2π

0

dφj

2π

)( n∏
j=1

yj

)
· R(n) ·

(
G(n)

)2
,

G(n) =
∏

1 ≤ i < j ≤ n

hij, hij =
2 sin ((φi − φj)/2) · √xi xj

1− xixj
,

R(n) =
1 +

∏n
i=1 xi

1 −
∏n

i=1 xi
,

xi =
2w

1− 2w cos(φi) +

√
(1− 2w cos(φi))

2 − 4w2
,

yi =
2w√

(1 − 2w cos(φi))
2 − 4w2

,

n∑
j=1

φj = 0

The quest for solvability. Tony Guttmann
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THE SUSCEPTIBILITY

To evaluate χ̃(n) convert to an n-fold integration with the explicit
phase constraint

∑
φi = 0 now in the integrand. A Fourier

transform decouples all φi integrations at the expense of a sum
over the Fourier integer k. Next expand all denominator factors
in the integrand, thereby converting it into a sum of n-fold
products

∏
yix

ni
i . Each i integration picks out the kth Fourier

coefficient of yix
ni
i . This coefficient is proportional to a 4F3

hypergeometric function. The integrand becomes a nested sum
of products of hypergeometric functions.

The quest for solvability. Tony Guttmann
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THE SUSCEPTIBILITY

In 1996, Enting and Guttmann gave compelling arguments
(though not a proof) that the Ising susceptibility was in a
different class of functions to that of most solutions of exactly
solved lattice models.

In particular, both the Ising free-energy and magnetisation are
holonomic functions (i.e. differentiably finite or D-finite
functions), while the susceptibility, they argued, was not.

In 1999 and 2000, Nickel suggested that the Ising susceptibility
possessed a natural boundary on the unit circle |s| = 1.
(Note that functions with a natural boundary cannot be D-finite.)

The quest for solvability. Tony Guttmann
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ENTING-GUTTMANN APPROACH

Many 2d lattice models are solvable for some properties and/or
some lattices.

Why this is so is not fully understood.

There are various numerical techniques that, magically, seem to
be exact for the solvable situations and not for the others.

This is even less well understood!

Our method is one such.

The quest for solvability. Tony Guttmann



MIN2Col

ENTING-GUTTMANN APPROACH

Many 2d lattice models are solvable for some properties and/or
some lattices.

Why this is so is not fully understood.

There are various numerical techniques that, magically, seem to
be exact for the solvable situations and not for the others.

This is even less well understood!

Our method is one such.

The quest for solvability. Tony Guttmann



MIN2Col

ENTING-GUTTMANN APPROACH

Many 2d lattice models are solvable for some properties and/or
some lattices.

Why this is so is not fully understood.

There are various numerical techniques that, magically, seem to
be exact for the solvable situations and not for the others.

This is even less well understood!

Our method is one such.

The quest for solvability. Tony Guttmann



MIN2Col

ENTING-GUTTMANN APPROACH

Many 2d lattice models are solvable for some properties and/or
some lattices.

Why this is so is not fully understood.

There are various numerical techniques that, magically, seem to
be exact for the solvable situations and not for the others.

This is even less well understood!

Our method is one such.

The quest for solvability. Tony Guttmann



MIN2Col

ENTING-GUTTMANN APPROACH

Many 2d lattice models are solvable for some properties and/or
some lattices.

Why this is so is not fully understood.

There are various numerical techniques that, magically, seem to
be exact for the solvable situations and not for the others.

This is even less well understood!

Our method is one such.

The quest for solvability. Tony Guttmann



MIN2Col

THE TWO-DIMENSIONAL ISING MODEL

Take t1 = tanh(Jx/kT) and t2 = tanh(Jy/kT) in directions x, y.
The log of the reduced p.f. is

log Λ(t1, t2) =
∑
n,m

an,mt2m
1 t2n

2 =
∑

n

Rn(t2
1)t2n

2 .

Baxter showed that Rn(t2
1) = P2n−1(t2

1)/(1− t2
1)2n−1.

Rn rational, with num. and den. pols of degree 2n− 1,
The only singularity in the complex t2

1 plane is at t2
1 = 1.

Maillard found an inversion relation for the p.f.,

log Λ(t1, t2) + log Λ(1/t1,−t2) = log(1− t2
2).

There is also the obvious symmetry relation

Λ(t1, t2) = Λ(t2, t1).

The quest for solvability. Tony Guttmann
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2D ISING FREE-ENERGY

Remarkably, these two relations, plus the structure of Rn suffices
to determine, order by order, the numerator polynomials.

Alternatively, the two functional relations, and the structure of
Rn implicitly gives the Onsager solution.

A mere 70 years after Onsager, we could conjecture the exact
solution from simple calculations—that of the first few Rns.

An attempt to do the same for the susceptibility fails because the
structure of the Rn’s is not so simple.

Unsolved models (such as the Ising susceptibility) are very
different:

The quest for solvability. Tony Guttmann
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2D ISING SUSCEPTIBILITY

χ(t1, t2) =
∑

n,m cn,mtm
1 tn

2 =
∑

n Hn(t1)tn
2.

The corresponding inversion and symm. relations are

χ(t1, t2) + χ(1/t1,−t2) = 0, χ(t1, t2) = χ(t2, t1).

The first few denominators of Hn(t1) are:

D0(x) = (1− t1)

D1(x) = (1− t1)2

D2(x) = (1− t1)3(1 + t1)

D3(x) = (1− t1)4

D4(x) = (1− t1)4(1 + t1)3(1− t3
1)

D5(x) = (1− t1)6(1 + t1)2

D6(x) = (1− t1)4(1 + t1)5(1− t3
1)3

The quest for solvability. Tony Guttmann
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2D ISING SUSCEPTIBILITY

The numerators are the same degree as denoms, and symmetric,
unimodal with positive coefficients.

But the degree of the polynomials increases non-linearly.

The functional relations are insufficient to determine the
numerator.

In the famous paper by Wu, McCoy, Tracy and Barouch,
χ(t) =

∑
χ(2n+1)(t), where χ(2n+1)(t) = O(t(2n+1)2−1).

H4(t) sees the first occurrence of (1− t3) in the denominator,
and reflects the O(t8) term that enters with χ(3).

Similarly, H12(t) sees the first occurrence of (1− t5) in the
denominator, and reflects the O(t24) term that enters with χ(5).

The quest for solvability. Tony Guttmann
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2D ISING SUSCEPTIBILITY STRUCTURE

Hn(t) is rational, with poles on the unit circle in the t-plane.

These become dense as n→∞.
Then (barring miraculous cancellation) χ(t1, t2) as a function of
t1 for t2 fixed (a) has a natural boundary, and (b) is neither
algebraic nor D-finite, despite the fact that Hn(t1) is rational.

Some models can be refined into a proof (absence of
cancellations).

If we could prove positivity and unimodality, that would do. (No
cancellations then possible).

Andrew Rechnitzer did this for SAPs, bond animals, bond trees.

Absent a proof, a powerful tool to conjecture non-D-finiteness.

The quest for solvability. Tony Guttmann
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CONCLUSION FROM THIS METHOD

A frequently exact method for models that can be exactly solved.

Fails for non-D-finite models.

Provides a powerful tool for predicting solvability.

Also a tool for conjecturing non-D-finiteness.

Glossed over Ian’s other seminal contribution, developing the
techniques to produce the enumerative data. Nathan will speak
more on this.

The quest for solvability. Tony Guttmann
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